
Journal of Computer Science & Technology, vol. 8, 2008, pp. 41-45.

Storage of Simulation and
Entities History in discrete
models.

De Giusti, Marisa, Lira, Ariel Jorge y Villarreal,
Gonzalo Luján.

Cita:
De Giusti, Marisa, Lira, Ariel Jorge y Villarreal, Gonzalo Luján (2008).
Storage of Simulation and Entities History in discrete models. Journal of
Computer Science & Technology, 8, 41-45.

Dirección estable: https://www.aacademica.org/marisa.de.giusti/59

ARK: https://n2t.net/ark:/13683/ptyc/ybu

Esta obra está bajo una licencia de Creative Commons.
Para ver una copia de esta licencia, visite
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es.

Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso
abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su
producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite:
https://www.aacademica.org.

https://www.aacademica.org/marisa.de.giusti/59
https://n2t.net/ark:/13683/ptyc/ybu
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es

Storage of Simulation and Entities History in discrete models

De Giusti Marisa Raquel*, Lira Ariel Jorge , Villarreal, Gonzalo Luján**.

* PrEBi UNLP and Comisión de Investigaciones Científicas (CIC) de la Provincia de Buenos Aires. La
Plata, Argentina

† PrEBi UNLP. La Plata, Argentina.
** PrEBi UNLP and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). La Plata,

Argentina

Index Terms: Models, Simulation, Persistence,
Databases

Abstract

Simulation is the process of executing a
model, that is a representation of a system with
enough detail to describe it but not too excessive.
This model has a set of entities an internal state, a
set of input variable that can be controlled and others
that cannot, a list of process that bind these input
variables with the entities and one or more output
values, which result from the execution of the
processes.

Running a model is totally useless if it can
not be analyzed, which means to study all
interactions among input variables, model entities
and their weight in the values of the output
variables. In this work we consider Discrete Event
Simulation, which means that the status of the
system variables being simulated change in a
countable set of instants, finite or countable infinite.

Simulation programming languages provide
a big range of tools for analysis of the results, for
generation and execution of experiments and to
perform complex analysis (such as Analysis of
Variance). This is usually enough for common
analysis, but many times more detailed information
is required.

In many circumstances it is desirable to have
all run of simulations stored in order to make further
analysis or comparisons between simulations, many
time after they have been run. Most simulation
environments provide reports and logs (journals) and
permit to save them in text or formated files, which
include all results and some aspects of the run itself.

In this work, we propose to store not only all

simulation results, but all simulation history. This
implies to store all permanent entities of the
simulation, and all changes they have undergone
along the simulation times. But it not only limits to
permanent entities, since we also store the temporary
ones, which are created and destroyed anytime in the
simulation and which existence is subject to the
execution of the simulation and the state of all model
variables.

This development takes the same syntax of
GPSS language and the way it handles entities, to
develop a simple interpreter and a tool that considers
a subset of GPSS entities and permits to execute
simulations with them. Besides, this tool permits to
search and select entities for each simulation and
displays their evolution along the simulation

1. Introduction.

Block programming languages offer an
important abstraction level that allows the
programmer to map objects from the real system to
entities of the simulation in an almost transparent
way, providing with each object a set of functions
and facilities, which lets the programmer focus on
designing the model and forget about programing of
implementation details. This is particularly useful
when looking for quick solutions, since time savings
achieved can be very significant and this the
required cost for modeling, simulating and
experimenting with systems goes considerably
down.

The real aim of any simulation is not to run
(execute) a system in a computer but to gather as
much information as possible for making all the
analysis we can imagine. Simulation languages
usually collect all possible data while the along the
simulation run, and most of them offer tools for
displaying this information, using simple text reports

 *, ,**{marisa.degiusti, alira, gonetil }@sedici.unlp.edu.ar

JCS&T Vol. 8 No. 1 April 2008

41

and probably statistics graphs, tables and functions.
GPSS programming language, which this work is
based on, is not an exception.

Besides all information given once the
simulation has ended, it is very important to know
how our mathematical model has reach this final
state and why it has happened this way. This kind of
analysis is far too complicated in discrete models
executed in GPSS-like languages, specially average
or large models with many entities, transactions and
processes inside. Thousands of transactions might
been created, moved and destroyed, and it is really
hard to track them back individually.

In this work we present an incipient open
simulation framework that allows to store in a
database all simulation objects in order to know how
they have evolved along the simulation time and
what has happened in each instant. This allows the
analyst, for example, to pick any entity and know all
changes it has suffered in all simulation times, which
entities it has interacted with and what was its time
life inside the model. In addition, they may select a
range of time and see what entities existed at that
moment. Or we can go even further, and consider
running and persisting many simulations with
different parameters and then compare information

from different simulations runs.

As we have mentioned, it is an open and
incipient framework. It is open because it has been
created according to GPL license, and incipient
because up to now it implements all basic model
which permits to run simple simulations but to
extend it including all we want.

2. The model.

For the development of this framework a
subset of GPSS entities have been selected, which

allow us to execute simple simulations but that
require the execution model to be complete enough.
Among these entities we have Transaction, Facility
and, clearly, Simulation.

Simulation entity is in charge of the
execution of commands and the generation of
transactions; it is also task of this entity to invoke
the transaction scheduler which must decide which
transaction have to be the next active transaction,
and to manage the simulation clock, detecting when
it must update and making all required tasks in each
clock change. This implied the addition of

Figure 1: Simulation graph

JCS&T Vol. 8 No. 1 April 2008

42

Transaction Scheduler and System Clock entities
inside the model. It has also been added an spare
entity which deals with references to entities
resolution, either by name or identifier; is entity is
able to locate any entity at any time anywhere in the
simulation. All entities form an horizontal
composition cyclic graph, being the entity
Simulation as the root of this graph, from which all
other nodes can be visited (Fig. 1). The entity
Transaction Scheduler is extremely complex since it
must interact, at first, with the two main chains of a
simulation: current events chain and future events
chain. But this entity must also be able to access
transaction held by other chains in each existing
entity every time is needed; for example, if the
transaction is trying to release the facility, the
transaction scheduler must select which transaction
will be the following owner of the facility being
released, meaning that it must analyze the current
events chain, the delay chain of the facility, the
preempt chain and the interrupt chain.

The movement among chains is also a
difficult task, since in implies not only the exchange
of hundreds or thousands transactions from chain to
chain, but it must also select transactions to
exchange and choose the right moment to make this
operation (change in the system clock, delay
condition testing, and others).

The decision of including in this first version
of the framework the entity Facility was not taken
randomly; this entity involves a wide set of
functions and entities, and has an intricate method
for selecting transactions according to the internal
state of each one of its chains and the way it is being
accessed.

3. Simulation persistence.

In order to store simulation in the disk, a
relational database engine (MySQL) together with a
java ORM (JPOX) has been used. As mentioned
above, we are dealing with discrete simulations,
hence we have a countable set of simulation instants
in which many events have occurred and entities
have been altered. So, we have consider to take a
picture of the whole simulation, including all entities
with their internal state, and to store this picture
exactly as it is. The storage process happens every
time the simulation clock is updated, just before this
events actually occurs, in order to persist the
simulation with the state before the clock changes.

Store a simulation in a determined time t
implies to store all entities that take part in this
simulation at this time t. In order to collect all
entities, the composition graph is walked along,
starting in the node representing the simulation
entity and moving forward all simulation chains,
entities list and chains of every entity. Since blocks
are also entities, they must be persisted too.

Every time the graph is walked along, all
persistible information is collected and, once it is
finished, the simulation clock is updated and the
execution goes on. Then, ideally, all this data should
be persisted to disk and the system clock updated in
order to go on with the run. The problem is that
writing to the disk is too slow compared to main
memory and processor speed, and we can not let the
simulation stop until objects are stored.

Our solution to this problem consist of
having a ready-to-store queue, and a low priority
thread in charge of the persistence (Fig. 2). All data
ready to persist is queued and remains in there until
it is actually persisted, and the simulation continues
running without waiting until data is written to disk.
To persist objects, we have include a single thread,
which runs together with the rest of the simulation.
This thread picks up simulations ready from the
persist queue and deals with DAO object and all
database stuff (connections, queries, transactions and
so on). It is important to remark that the extra thread
has a lower priority than the simulation run; we have
designed it this way because we do not want the
simulation to be delayed for anything.

This solutions is good for having results
immediately when the simulation ends while the
persistence to the database is being made in
background. The user may start analyzing data or
adapting the model while the simulation keeps being
stored in background, improving user experience
and efficiency.

3.1 Data collection.

The whole application is written in Java,
which means it uses all well known Object Oriented
concepts (inheritance, hierarchy, OID, etc). When
saving this objects to the database, we must make
sure that they are not updated since we would loss
the state of the objects before this update. One
solution would be to have a version scheme where
only new or changed data are stored; the main
problem of using versions is that it would be really

JCS&T Vol. 8 No. 1 April 2008

43

difficult to retrieve a simulation in any system clock.
It would be efficient in disk, slow in data retrieve
though.

Since hard disks are really huge these days,
and computers have lots of memory, it is not
expensive to duplicate data even if it has not
changed. With this idea in mind, our solution has
been both simple and efficient: the whole simulation

graph is cloned in every change of the system clock,
copying every node that takes parts of the simulation
(transactions, facilities, blocks, chains, and
everything else). Once the cloning process has
ended, the cloned simulation is queued to store and,
as said above, the simulation can move on.

4. Data recovery.

The way data are stored permits to retrieve
simulations very easily; in the database there are
many copies of every simulation run, where each
copy will differs in, at least, the state of the
simulation clock. Hence, to recover a simulation in a
specific time t is as simple as retrieve the Simulation
object and again, start a chain effect retrieving all
objects reachable from it.

But being able to retrieve a simulation in a
time t is no the only advantage of this tool. All

entities, both permanent and temporary, have an
internal identifier, which never changes along the
simulation. This is very useful to write new analysis
tools that pick an specific entity and all copies
generated before it; with all this information, this
tool could show exactly how the entity changed, or
which transaction were accessing it or were in its
chains, or any other data that determine its internal
state. This tool could even go beyond this ideas: we

could have stored many simulation executions for
the same model but with different parameters, and
then we could retrieve any particular entity with all
its states for all simulations. This way, we can not
only see how this entity has changed, but to compare
this changes with all instances of the same entity in
different simulations.

6. Conclusion.

The framework is still being developed,
incorporating new entities and blocks and improving
the already developed ones. Besides the completion
of GPSS model, this system is a great opportunity to
every programmer who wants to add his own
analysis tool, since all data of every simulation is
ready to access and use; the fact that the framework
is open source permits programmers to understand
how data is organized, so they can efficiently
retrieve it and show it the way they want.

Figure 2: Producer/Consumer scheme

JCS&T Vol. 8 No. 1 April 2008

44

This kind of tool is also very useful to help
students during the learning process of GPSS (and
other simulation tools); we have studied GPSS
model and grouped a subset of entities to develop a
base model, which has to be extended but is full
enough to start playing with simple yet powerful
simulations. Students may already open any entity
and see how it works below, how things are done
and how it could be improved. Students and any
programmer can even create their own entities
beyond the ones defined in GPSS; there are no limits
at all.

References.

[AND99] Foundations of multi threaded, parallel
and distributed programming. Gregory R. Andrews.
Addison Wesley. 1999

[DUN06] Simulación y Análisis de sistemas con
ProModel. Eduardo García Dunna. Heriberto García
Reyes. Leopoldo E. Cárdenas Barrón. Pearson.
2006.

[JOR03] Java Data Objects. David Jordan, Craig

Russell. O'Reilly Media, Inc. 2003

[JPO08] Java Persistent Objects.

http://www.jpox.org/

[LAN85] Teoría de los sistemas de información.
Langefors, Börje. 2a. ed. (1985)

[KIM88]Schema versions and DAG rearrangement
views in object-oriented databases (Technical report.
University of Texas at Austin. Dept. of Computer
Sciences). Hyoung Joo Kim. University of Texas at
Austin, Dept. of Computer Sciences. 1988

[KIM90] Introduction to Object-Oriented Databases.
Won Kim. The MIT Press. 1990.

[MIN05] Minuteman Software
http://www.minutemansoftware.com

[SIM08] Simulation and Model-Based Design.
http://www.mathworks.com/products/simulink/

[VIT86] Design and Analysis of Coalesced Hashing.
Jeffrey Scott Vitter, Wen-chin Chen. Oxford
University Press, USA. 1986.

[WIL66] Computer simulation techniques. Wiley;
1st corr. printing edition (1966).

JCS&T Vol. 8 No. 1 April 2008

45

http://www.mathworks.com/products/simulink/
http://www.minutemansoftware.com/
http://www.jpox.org/

