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A B S T R A C T

Microplastic pollution is a problem of global scale, posing a threat to marine biota. To determine the current
state of microplastic pollution on four popular sandy beaches of the coast of Lima, Peru, a sampling campaign
was carried out in both intertidal and supralittoral zones. Microplastic abundance, type, size, color and dis-
tribution were recorded. The overall microplastic abundance was of the same order of magnitude as previous
data obtained in Peru. Foams were the most abundant (78.3%) microplastic type. Statistical analyses revealed
significant differences between sites and zones. High variability of microplastic abundance was found among
adjacent beaches and zones. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed that all foams
were identified as polystyrene. The present results revealed an alarming level of microplastics present on
Peruvian sandy beaches, but information about the sources, local dynamics and impacts of microplastics in this
region are scarce, and thus further research is needed.

Annual production of plastic products around the world
reached>355 million tons in 2016 (PlasticsEurope, 2018). The impact
of plastics in the marine environment is well documented, causing
entanglement of marine species, ingestion and translocation of non-
native organisms (Derraik, 2002). Plastics reach the marine environ-
ment through land- or sea-based sources (Andrady, 2011), and have
become a persistent and ubiquitous pollutant in the ocean (Hitchcock
and Mitrovic, 2019). Microplastics are plastic particles smaller than
5 mm in diameter (Andrady, 2017; Crawford and Quinn, 2017), and
can be classified in two categories: primary and secondary micro-
plastics. Manufactured plastic particles of microscopic size are con-
sidered primary microplastics (Cole et al., 2011), while secondary mi-
croplastics are fragmented particles derived from larger plastics (Shim
et al., 2018) due to its exposure to mechanical fragmentation and
photolytic and biological degradation (Browne et al., 2007). Ingestion
of microplastics have been reported in fish (Baalkhuyur et al., 2018;

Chagnon et al., 2018), marine mammals (Hernandez-Gonzalez et al.,
2018), bivalves (Naidu, 2019), seabirds (Provencher et al., 2018; Thiel
et al., 2018), and many other marine species (Rebolledo et al., 2013;
Zhu et al., 2019). The potential risk of adsorbing contaminants from the
environment and transferring through the food chain make micro-
plastics a threat for marine species, ecosystems (Guzzetti et al., 2018),
food security and, ultimately, human health (Barboza et al., 2018; De-
la-Torre, 2019).

Coastal environments have been subject to microplastic pollution,
including sandy beaches around the world (e.g. Hidalgo-Ruz and Thiel,
2013; Tiwari et al., 2019). In Peru, very few studies have addressed this
issue (Ory et al., 2018; Purca and Henostroza, 2017). For that matter,
the overall aims of this study were to: (1) evaluate the current state of
microplastic pollution in four popular sandy beaches from the coast of
Lima, and to (2) determine the characteristics and distribution of mi-
croplastics along the coast.
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A sampling campaign was carried out during March and April of
2018 (dry season), during low tide. Samples were collected from four
adjacent sandy beach sites within the city of Lima (Fig. 1): Yuyos
(12°09′11.1″S 77°01′30.4″W), Sombrillas (12°09′24.9″S 77°01′34.3″W),
Agua Dulce (12°09′47.0″S 77°01′36.7″W) and Pescadores (12°09′56.6″S
77°01′49.2″W). These beaches are very close to each other, each within
a few hundred of meters. Yuyos, Sombrillas and Agua Dulce are very
popular for beachgoers and small food businesses. At Pescadores beach,
fishing boats are common and artisanal fishing activity is carried out
daily. Due to its proximity, Agua Dulce is also influenced by fishing
activity.

Sampling was performed following McDermid and McMullen
(2004) with minor modifications. Every beach was divided into 12
transects, six belonging to the intertidal zone (ITZ) and the other six to
the supralittoral zone (SLZ). The distance between transects varied
depending on the beach length in order to cover most the ITZ and SLZ
area in every beach. The ITZ was defined as the area between the high
tide line and the low tide line, while the SLZ as the area above the high
tide line (Fig. 1). To avoid bias by the strandline, sand samples were
collected by randomly placing one 50 × 50 cm2 quadrant in each
transect (n = 6 per zone) and scooping the surface sand (1 cm deep)
with a small metal shovel. Samples were taken to the laboratory for
further analysis.

Wet samples were dried over night at room temperature. Once
dried, sand samples were then sieved through a set of 1, 2.8 and
4.75 mm nested sieves. Residuals in each tray were placed separately in
labeled glass petri dishes. Mesoplastics (≥5 mm particles) were dis-
carded. Density separation was carried out by placing the residuals of
every tray in 1 L glass beakers containing a saline solution (120 g L−1

NaCl) and stirred for 15 min with a glass rod (Laglbauer et al., 2014).
Floating microplastics were separated manually and placed in labeled
glass petri dishes. When necessary, the morphology of some particles
was observed under a stereomicroscope to further proof they were
plastics. Microplastic abundance, size, type and color (white, blue, red,
green, yellow, black, transparent and other colors) were recorded. Mi-
croplastic types followed their description by Wu et al. (2017): foam,
fragment, pellet, sheet, film and fiber/line. To avoid confusion, the
fiber/line type is defined as degraded textiles or finishing lines in the
present study. No rigorous contamination control measures were
needed, as this study aimed to assess microplastics from 1 to 4.75 mm
in diameter. All microplastics were photographed.

A sample of 25 microplastics were selected (5 foams, 8 fragments, 7
pellets, and 5 fiber/lines) to be analyzed by Fourier transform infrared
spectroscopy (FTIR) using a Perkin Elmer Frontier™ FT-IR at wave-
lengths between 500 and 4000 cm−1 and 30 scans. The obtained
spectra were automatically compared with the reference spectra from
the FTIR library and the polymer with the highest percentage of simi-
larity was selected and accepted with a match>80%.

Microplastic abundance was expressed in particles m−2. Shapiro-
Wilk tests invalidated the normal distributions of the data. To explain
the distribution variability of microplastics among zones and beaches, a
Generalized Linear Model (GLM) was developed. The predicted variable
was the microplastic concentration (MPC) and the predictive variables
were the beach zone (Z), the beach (B) and the interaction between
beach and zone (Z × B). While MPC is a numeric variable, B and Z are
factors. In order to normalize the distribution of the data, it was
transformed by taking the base 10 logarithm of the values (LogMPC).
Shapiro-Wilk test (p>0.05) confirmed that the transformed variable

Fig. 1. Map showing the region and the sites selected in the coast of Lima. S1: Yuyos, S2: Sombrillas, S3: Agua Dulce, and S4: Pescadores. Black squares above the
high tide line indicate the orientation of the transects from the supralittoral zone and below the transect from the intertidal zone.
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satisfied the assumption of normality. The model was formulated as
follows:

+ + ×LogMPC Z B Z B~

The residuals of the resulting model satisfied the assumption of
normality (Shapiro-Wilk test, p>0.05). The parsimony of the models
was evaluated using the Akaike Information Criterion (AIC). Significant
level was set to 0.05 for all the analyses. All statistical analyses and
models were conducted using R Software.

Results indicated that all the sampled beaches contained micro-
plastics ranging from 1 to 4.75 mm in size. A total of 2089 microplastic
particles were extracted and identified (Table 1). The highest abun-
dance of microplastics was in S2 (489.7 ± 143.5 particles m−2), fol-
lowed by S3 (135.0 ± 25.97 particles m−2), S4 (55.0 ± 14.83 par-
ticles m−2) and the lowest in S1 (16.67 ± 4.26 particles m−2).
Regarding microplastic types, 78.3% of the total microplastics were
identified as foams and 17.38% were fragments, indicating that sec-
ondary microplastic dominated (Table 1). No sheets or films were found
at any of the sampling sites. Most particles (54.2%) were from 1 to
2.8 mm in size, the remaining 45.8% ranging from 2.9 to 4.75 mm.
Regarding color, the majority (84.8%) of the microplastics were white,
followed by blue (4.0%), red (2.6%), green (2.2%), yellow (2.0%), and
other colors (3.2%).

Regarding the GLM results, the three predictive variables were
statistically significant (p<0.01), although showed different levels of
contribution to the model (Table 2). The variable with the lowest per-
centage of contribution to explain the total variance of MPC was Z
(2.68%), followed by B (32.26%) and the interaction of the two vari-
ables Z × B (58.7%). MPC differences between the ITZ and SLZ did not
show a great significance in the four sites (See Fig. 2). However, beach
and both beach and zone together were the most relevant factors to the
GLM. In addition, Tukey's HSD (honestly significant difference) post-
hoc test revealed five groups with no significant MPC difference
(p>0.05) between them. These groups were S1-SLZ and S2-SLZ, S3-
SLZ and S4-SLZ, S1-ITZ and S2-ITZ, S4-SLZ and S3-ITZ, and S2-SLZ and
S4-ITZ.

The number of analyzed particles by FTIR was not suitable for sta-
tistical analysis. The 25 selected particles were confirmed synthetic
polymers according to their similarities with reference spectra from the
FTIR library. Identified microplastics were high-density polyethylene
HDPE (5 fragments and 7 pellets), isotactic polypropylene IPP (3
fragments), polystyrene PS (5 foams), polypropylene PP (4 fiber/lines)
(Fig. 3). One fiber was identified as polyester, but the similarity per-
centage with the reference spectrum did not reach the> 80%

threshold.
The microplastic abundance of the present study is comparable to

other regions. Results from a broader range along the Peruvian coast
showed similarities in terms of variability (Purca and Henostroza,
2017), as their mean microplastic abundance were 40 particles m−2,
4.7 particles m−2, 463.3 particles m−2, and 11.3 particles m−2 for sites
1, 2, 3 and 4 respectively. However, the average abundance for the
Chilean continental coast is 27 ± 2.6 particles m−2, indicating minor
levels of microplastic pollution in the SE Pacific, although microplastic
abundance in the Eastern Island reached 805 particles m−2 due to the
transportation of plastic debris by the Subtropical Gyre (Hidalgo-Ruz
and Thiel, 2013). Microplastic abundance from other parts of the world
are well documented and vary considerably depending on the specific
region (Table 3). The use of different units made the comparison among
areas of the world difficult (Barboza et al., 2019), so there is a need to
harmonize methodologies for reporting the presence of microplastics in
sandy beaches.

Foams were the most common microplastic type (78.32%), followed
by fragments (17.38%). A high abundance of foams was also previously
reported from sandy beaches from South Korea (Eo et al., 2018) and
Russia (Esiukova, 2017). However, most of the studies from around the
globe reported mainly fragments and fibers (Claessens et al., 2011;
Hengstmann et al., 2018; Hidalgo-Ruz and Thiel, 2013; Lots et al.,
2017; Qiu et al., 2015; Yu et al., 2016). Specific microplastic type oc-
currence depends on region-specific land-based activities and social
behavior. S1, S2 are popular recreational beaches, while S4 has a
constant fishing activity and S3 has partially both. It is important to
note that Lima is the most populated city in Peru and, more specifically,
in S2 and S3 local food businesses provide many single-use of styrofoam
materials, like plates, cups and boxes. Besides, the presence of weath-
ered buoys in the ocean may detach small foam debris to the ocean.
Thus, here the sources of small expanded polystyrene are different than
in South Korea, Russia or southern Chile where these derive from
aquaculture floats (Eo et al., 2018; Esiukova, 2017; Hinojosa and Thiel,
2009).

The majority of the microplastics were white in color, and 92.32%
of the white colored particles were foams. Thus, the high abundance of
foams has a considerable influence over the overall color proportion.
Color influences microplastic ingestion by selective marine species (Ory
et al., 2017), reason why it is an important factor. The predominant
colors reported on beaches and in coastal waters from Sri Lanka were
blue (29%) and green (23%) (Koongolla et al., 2018).

A study on the surface sediment of the Bering Sea-Chukchi Sea shelf
showed that the most common microplastics ranged from 0.10 to
2.0 mm (Mu et al., 2019); data obtained on a research conducted in
Japan, Thailand, Malaysia and South Africa using box corers showed
that the size of most microplastics from the sediments ranged from
315 μm to 1 mm (Matsuguma et al., 2017). The microplastics of the two
size ranges (from 1 to 2.8 mm and from 2.8 to 4.75 mm) obtained in the
present study are very similar in proportion, although particles smaller

Table 1
Number of microplastic particles of every type at each beach site.

Beach Foams Fragments Pellets Fibers/lines Total

S1 20 21 5 4 50
S2 1230 195 43 1 1469
S3 244 134 11 16 405
S4 142 13 0 10 165
Total 1636 363 59 31 2089

Table 2
Analysis of the variance and AIC for the GLM.

Model Residual
variance

Deviance D.f. % of total
variance
explained

AIC p value

Null 22.656 101.96
+ Zone 22.049 0.607 1 2.68 102.71 < 0.01
+ Beach 22.049 7.309 3 32.26 90.19 < 0.01
+ Zone ×

Beach
1.440 13.300 3 58.70 −10.79 < 0.01

Fig. 2. Boxplot of the microplastic abundance (particles m−2) per beach and
beach zone. SLZ: supralitoral zone, and ITZ: intertidal zone.
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than 1 mm were not extracted.
Washed up microplastics are mainly due to landward winds and

currents (Isobe et al., 2014). In this case specifically, the Peru Coastal
Current (PCC) is a surface wind-driven current flowing northward along
the Peruvian coast (Chaigneau et al., 2013). Thus, surface current-
driven microplastic washing ashore is very likely in this region, how-
ever more studies in Peruvian coast are needed to fully understand this
process. The present results showed that S2 (489.7 ± 143.5 particles
m−2) and S3 (135.0 ± 25.97) were the beaches most contaminated by
microplastics and with also a higher microplastic abundance in the ITZ.
S1 and S4 have man-made structures interfering with the natural

surface current flow (Fig. 1), suggesting that microplastics that are
being driven by the currents may not be impacting directly on them.
This may also explain low microplastic occurrence in the ITZ of these
beaches. Aguilera et al. (2016) showed that artificial intertidal break-
waters promote retention and accumulation of human-derived litter
and entrapment of floating debris. The presence of these artificial
structures strongly influences over tidal activity in S1 and S4 and may
serve as a barrier and trap for floating microplastics, resulting in the
low abundance of stranded microplastics in the ITZ. It should be noted
that although S4 is a small beach surrounded by manmade structures, it
has a high daily fishing activity. Since ocean currents are a key factor to

Fig. 3. Examples of different microplastic types with their FTIR spectrum. *: reference spectrum.
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determine the distribution and movements of microplastics along
coastal regions, it is necessary to study this natural phenomenon and
focus on micro-debris translocation in this region. Another important
factor to consider is the continuous disposal of styrofoam materials to
the beach by beachgoers. The lack of weathering indicators in sampled
white foams (PS), like brown or greenish coloring of the originally
white particles, suggests that many of these particles had been recently
emitted by the source (the breakdown of styrofoam debris) on site.

Extra peaks in the IR spectrum of the analyzed microplastics in
contrast with the library pattern may be due to plastic polymer de-
gradation and adsorption of other contaminants during their voyage in
the ocean. The absence of polyvinyl chloride (PVC) and polyethylene
terephthalate (PET) may be attributed to their high densities
(1.16–1.58 g cm−3 and 1.37–1.45 g cm−3) (Karthik et al., 2018). High
density plastics tend to settle on the seafloor, although their sinking
rates are influenced by other factors, like sea surface tension, size or
shape (Shim et al., 2018). All the analyzed foams were identified as PS.
High abundance of PS debris could be subject to leaching of styrene
oligomers (SOs) and posing a long-term risk to the marine environment
(Kwon et al., 2015). SOs are ubiquitous in surface and deep seawater
(Kwon et al., 2017), and thus a SOs monitoring system in beach sand
and water column is necessary to assess the impact in marine organisms
in the area.

The present study described the distribution and characteristics of
microplastics on four sandy beaches of Lima, Peru. A high variation of
microplastic abundance was found between beaches. S2 had the highest
microplastic abundance (489.7 ± 143.5 particles m−2). Polystyrene
(78.31%), which also resulted in the dominance of white plastics, and
fragments (17.38%) were the most abundant microplastic type. Little
difference was found between the amounts of microplastics of different
sizes. The overall microplastic abundance of every beach may be at-
tributed to the PCC, man-made structures interfering with the micro-
plastic-driver currents and contamination with single-use styrofoam
materials provided by local food business located within the beach area
in S2 and S3. A significant difference was found between tidal zones on
all beaches. The chemical composition of all the foam samples was PS,
thus indicating that this was the most important microplastic in the
region and a potential threat of styrene oligomer pollution in the area.
Furthermore, as this present study and other studies from the region
have focused mostly on the larger fraction of microplastics (1–5 mm),
more research is needed specially focused on microplastics of smaller
sizes (0.01–1 mm).
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