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Abstract—Based on a modification of the Steinmetz 
equation, simple and general formulas suitable for magnetic 
power loss estimation in converter design are proposed.  Using 
only the manufacturer data sheet parameters for sinusoidal 
waveforms, it is possible to estimate the core losses in 
symmetrical converters. A loss model is introduced to consider 
the loss increment caused by DC magnetization bias in 
asymmetrical converters, giving worst case criteria to design the 
magnetic components. 

Keywords—magnetic core losses, Steinmetz equation, power 
magnetic components, switching converters. 

I. INTRODUCTION  

In 1892 C. Steinmetz proposed an equation to calculate the 
energy lost in each hysteresis cycle [1]. According to his 
proposal, a similar expression was introduced to calculate all 
kinds of losses with sinusoidal waveforms, such as: 

ௌ௧ࣰ  = ிܲ ࣰℴℓ = ݇ௌ⁄ 	݂ఈ	ܤఉ		 (1) 

which is usually referred as the Steinmetz equation [2], where: ܤ	 is the maximum induction amplitude, ݂	is the frequency 
of sinusoidal excitation and ݇ௌ	, ߙ	, and ߚ	are constants found 
by curve fitting. Actually ݇ௌ	, ߙ	, and ߚ	are not constant over 
the entire range of frequency and induction operation span. 
Therefore, they should be obtained from manufacturer curves 
using data close of the point of converter operation. 

 Sometimes, this involves a wide span of magnetic 
conditions. In such a cases, two alternatives may be adopted: 
Using one set of parameters suitable for the lower range of the 
frequency operation and other for the higher frequency range. 
The other approach may be to use some fitting formula, to 
adapt the parameters for considering the frequency 
dependence, as proposed in [3]: 

 ݇ௌ = 	݈݊	ܣ ሾ݂ு௭ሿ +  (a.2) ܤ

ߚ  = ைߚ	 − 	ܥ ሾ݂ு௭ሿ		 (2.b) 

where ܣ	ܤ ,	, and ܥ	are constants to be determined using the 
core-material data sheet. 

 The Steinmetz equation and the data provided by magnetic 
material manufacturers is based only on sinusoidal excitation,  
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whereas power electronic converters, new electric machines 
and motor drives have very different waveforms, which cause 
different kind of power losses [4], [5], [6].  

Also, if DC magnetizing bias is present, an important 
additional core loss increment is found. 

 Therefore, a method for loss estimation in non sinusoidal 
operation is required. 

Several prediction models are based in modifications of 
(1) to take account of arbitrary waveforms [7], [8], [9]. 

II. MODELS BASED ON STEINMETZ EQUATION MODIFICATION 

A way to consider the effects of non sinusoidal 
waveforms is to include ݀ܤ ⁄ݐ݀ 	 in the expression of the 
instantaneous power losses, since these losses will be nul 
during the time intervals where ܤ	is constant. 

Thus a loss model called Natural Steinmetz Extension [7] 
was proposed as: 

ேௌாࣰ  = ಷࣰℴℓ = ݇ே(∆ܤ 2⁄ )ఉିఈ 	ቄଵ் 	 ܤ݀| ⁄ݐ݀ |ఈ	݀ݐ் ቅ	 (3.a) 

where: 

 ݇ே = ݇ௌ ቂ(2ߨ)ఈିଵ  ఈଶగ|ߠ	ݏܿ| ቃൗߠ݀	 	 (3.b) 

Another loss model called Modified Steinmetz Equation 
[10] was proposed by defining an equivalent frequency ݂	: 
 ݂ = ሾ2 ⁄ଶ(ܤ∆ߨ) ሿ  ܤ݀) ⁄ݐ݀ )ଶ்  (a.4) 	ݐ݀	

Substituting (4.a) in (1) gives the Modified Steinmetz 
Equation as: 

ெௌாࣰ  = ிܲ ࣰℴℓ = ݇ௌ⁄ 	 ݂ఈ	݂	൫∆ܤ 2ൗ ൯ఉ		 (4.b) 

where ∆ܤ = ௫ܤ	 −  is the peak to peak value of the	ܤ
induction. 

A more accurate model valid for many different 
waveforms, named General Steinmetz Equation [9] was 
proposed as: 



ௌாீࣰ  = ಷࣰℴℓ = ݇ ቄଵ் 	 ܤ݀| ⁄ݐ݀ |ఈ	หܤ(௧)หఉିఈ݀ݐ் ቅ	 (5.a) 

where: 

 ݇ = ݇ௌ ቂ(2ߨ)ఈିଵ  ఈଶగ|ߠݏܿ| ቃൗߠ݀	ఉିఈ|ߠ݊݅ݏ|	  (5.b) 

An approximative formula valid when no minor loops are 
present is: 

 ݇ = ݇ௌ 2ఉ	ߨఈሼ0.1758 + ሾ1.08614 ߙ) + 1.354)⁄ ሿሽ⁄  (5.c) 

In order to improve the consideration of waveforms with 
"minor loops" associated with the fundamental B-H loop, a 
software for taking account of its effects was developed [11] 
and the enhanced method was named Improved General 
Steinmetz Equation (iGSE). 

Further, in order to get equations expressing the core-
losses as function of electrical variables of the converter 
circuit, a modified model called Extended Steinmetz Equation  
was proposed [12] (sacrifying some accuracy) as stated by: 

ாௌாࣰ   = ಷࣰℴℓ = ݇ீ	 ݂ఔ	(∆ܤ 2⁄ )ఞ	൫ܤሶ௦൯	 (6.a) 

where: 

 ݂ = ଵଶ	(1 ⁄ܤ∆ )	ቀଵ் 	 ቚ݀ܤ ൗݐ݀ ቚ	݀ݐ் ቁ = หܤሶ ห௩ 2	Δܤ൘ 	 (6.b) 

ሶ௦ܤ  = ටଵ் 	 ቀ݀ܤ ൗݐ݀ ቁଶ	݀ݐ் 	  (6.c) 

 หܤሶ ห௩ = ଵ் 	 ቚ݀ܤ ൗݐ݀ ቚ	݀ݐ் 	  (6.d) 

For pure sinewaves: ݂ = ݂ . 
Substituting (6.b) in (6.a) one obtains: 

ாௌாࣰ   = ݇	൫ܤሶ௦൯ఊ ቀหܤሶ ห௩ቁఌ ܤ∆)	 2⁄ )క		 (7) 

For sinusoidal waveforms (7) should match the classical 
Steinmetz equation (1), yielding: 

ாௌாࣰ  = ݇ாௌா		൫ܤሶ௦൯ఈିఌ 	ቀหܤሶ ห௩ቁఌ ܤ∆) 2⁄ )ఉିఈ (8.a) 

 ݇ாௌா = ݇ௌ ൫√2	ߨ൯ఈ൫√8 ⁄ߨ ൯ఌ⁄ 	 (8.b) 

The equation 8.a will be defined as Extended Steinmetz 
Equation (ESE). It includes a parameter ߝ	which modifies the 
rise of the plotted function (loss vs. duty cycle). This 
parameter is determined looking for the best fit with 
experimental data. A good match is obtained adopting: 

ߝ   = 2 −  (c.8) 	ߙ	0.86	

 Substituting (8.b) and (8.c) in (8.a) and dividing for the 
classical Steinmetz equation (1) it results: 

ாௌாܯ  = ாௌாࣰ	 ⁄ௌ௧ࣰ = 

(1.234 4.863ఈ⁄ )݂ିఈ ቀหܤሶ ห௩ቁଶି.଼ఈ ൫ܤሶ௦൯ଵ.଼ఈିଶ(∆ܤ 2⁄ )ିఈ
   (9) 

Considering that:  

ሶ௦ܤ   หܤሶ ห௩൘ = ܸ௦ |ܸ|௩ൗ = ݂	 (10) 

where ݂	is the shape factor of the applied voltage, and: 

  ܸ௦ = ݊	ܵிܤሶ௦	 (11) 

where ݊	is the coil turns number and ܵி   is the core-section. 
For unipolar waveforms: 

 Δܤ = (1 ݊	ܵி⁄ )  ଶ/்(௧)ݒ ݐ݀	 = 	 |ܸ|௩ 2	݂	݊	ܵி	⁄  (12) 

Therefore, substituting (12), (11), and (10) in (9): 

ாௌாܯ  = 1.234	(0.8225)ఈ 	ቀ ݂ቁଵ.଼ఈିଶ	 (13) 

Notice that to obtain ܯாௌா	no assumptions were made 
neither on the type of converter nor in its waveforms, except 
for the unipolar waveform feature required. Also, to consider 
the minor loops influence a Simulink program was developed 
and it is available in [12]. 

III. APPLICATION TO SYMMETRICAL-WAVES CONVERTERS 

A. Rectangular Wave Converters (Fig. 1) 

For a typical steel ߙ ≅ 1.3	 and for a square wave 
converter it is ݂ = 1	 which gives ܯாௌா = 0.957	 . 
Therefore, the core losses may be estimated using the 
manufacturer data measured for sinusoidal excitation, 
adopting ܤ	 = ܤ∆	 2	⁄ . 

For a rectangular voltage waveform with the same peak 
factor than a sinusoid, it is: 

 ݂ = ܸ ܸ௦⁄ 	= √2 = 1 ⁄	ܦ√  (14) 

Then, the duty cycle results ܦ = 0.5	and ݂	results: 

 ݂ = ܸ௦ |ܸ|௩⁄ = 1 ⁄	ܦ√ 	= √2 (15) 

 

Fig. 1. Rectangular waveforms. 
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Therefore: ܯாௌா = 1.106 . 

If a material with ߙ = 1.8	 were used, it should be: ܯாௌா = 1.385	. 
For most of laminated steels it is ߚ ≅ 2	 so, to keep core 

losses constant, the induction ܤ	  should be reduced 
regarding the value used for sinusoidal waveforms, as: 

௦ܤ   =   (16)	௦ܤ	0.85

B. Unipolar PWM Sinewave Inverters 

For an inverter using unipolar PWM sine wave synthesis 
(as shown in Fig. 2) the average transformer voltage must be: 

  ܸ 	݀(௧) = 	 ܸ	݊݅ݏ	ݐ߱	(17)  

where ݀(௧)	 is the time dependent duty cycle required to 
produce the sinusoidal average value of the out waveform. 
So, 

  ݀(௧) = 	 ( ܸ ܸ⁄  (18) 	ݐ߱	݊݅ݏ	(

If  ܸ = ܸ	, the rms voltage applied to the transformer 
becomes: 

  ܸ ௦ = ටଶ்  ܸଶ݀(௧)	்݀ݐ ଶ⁄ 	= ܸ	ටଶ்  ்ݐ݀	ݐ߱	݊݅ݏ ଶ⁄ 	= 

 =	ඥ2 ⁄ߨ 	 ܸ	  (19) 

and the average rectified value results: 

  |ܸ|௩ = 	 ଶ்  ܸ	݀(௧)	்݀ݐ ଶ⁄ 	= (2 ⁄ߨ ) ܸ	 (20) 

Therefore the voltage shape factor is: 

 ݂ = 	ඥߨ 2⁄ = 1.253	 (21) 

From (13) this yields: 

ாௌாܯ  = 0.786	(1.2533)ఈ		 (22) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Unipolar PWM waveforms. 

For a typical lamination steel with ߙ = 	1.3	  this gives ܯாௌா = 1.054 ≅ 1	and the data sheets curves for sinusoidal 
waveforms could be applied for power loss estimation. 

C. Bipolar PWM Sinewave Inverters 

In bipolar PWM, multiple B-H loops appear and the ESE 
will give results lower than the experimental ones. 

To overcome this problem, the flux waveform is separated 
in individual loops without including inner loops, following 
the general procedure introduced in [11] and later adapted in 
[12], [21]. 

However, in this particular case, simplifications may be 
done to estimate the inner loops contribution to the core-losses 
increments. 

In bipolar PWM there are multiple voltage commutations, 
each one corresponding to an inflexion point of the 
magnetizing current ܫெ	 (See Fig. 3) and so also to an 
inflection point of the induction ܤ	. 

In Fig. 4 a switching cycle is detailed. There, the major B-
H loop passes through points 2, 3, 5 and 6, while points 3, 4, 
and 5 form a minor loop. 

Therefore, for this equivalent voltage waveform the shape 
factor will be the same obtained for unipolar PWM, so the 
major loop will have losses increased with respect to the case 
of sinusoidal driving according to a factor given by (22). 

To compute the total losses, the minor loop losses have to 
be calculated in order to be added to the major loop ones. From 
Fig. 4 one obtains: 

ܤ݀|  ⁄ݐ݀ | = ܤ∆ ൗݐ∆ = ܸ ݊	ܵி⁄ 			 (23) 

ݐ∆  =   (24)	ݐ∆	2

As the derivative of the induction is a square wave, it 
follows that: 

ሶ௦ܤ  = หܤሶ ห௩ = ܤ݀| ⁄ݐ݀ | = ܤ∆ ൗݐ∆ 	= ܸ ݊	ܵி⁄  (25) 

Substituting  these values into the ESE expression and 
weighting the minor loop loss contribution by its time 
duration, yields: 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Bipolar PWM waveforms. 
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ெ  = ݇ ቀ∆ܤ ൗݐ∆ ቁఈ ൫∆ܤ 2⁄ ൯ఉିఈ ቀ2	∆ݐ	 ܶ⁄ ቁ (26) 

where, 

  ݇ = 1.234	݇ௌ (4.863)ఈ⁄ 	 (27)  

and ܶ = 1 ݂⁄ 	 is the period of the sine wave to be synthesized. 

Substituting (25) into (26) gives: 

ெ   = 2ఈିఉାଵ	݇	݂	( ܸ ݊	ܵி⁄ )ఉ	∆ݐ	 (28) 

From Fig. 4 it is: 

ݐ∆   = 	 ( ௌܶௐ 2⁄ )	൫1 −   (29)	൯ݐ	߱	݊݅ݏ

Substituting (29) in (28) gives: 

ெ  =	2ଶ(ఈିఉ)݇	ൣ݂ ௌ݂ௐ(ఉିఈାଵ)⁄ ൧( ܸ ݊	ܵி⁄ )ఉ. 

 . ൫1 −  ൯ఉିఈାଵ (30)ݐ	߱	݊݅ݏ

Due to the symmetry of the induction waveform, the total 
minor loop losses will be twice the value of the rising part 
ones. Therefore: 

ெ   = 2	 ∑ ெ ଶ⁄ୀଵ = ݊	  ௩ (31)〈ெ〉

where ݊	 is the number of minor loops per cycle of the 
synthesized sine wave: 

  ݊ = 	 ௌ݂ௐ ݂⁄ 	 (32) 

As ௌ݂ௐ ≫ ݂	the discrete average may be approximated by 
the integral average, leading to the final simplified expression 
proposed in [12]: 

ெ  ௌ௧ =⁄  = 0.47	(0.8225)ఈ 	ቀ2ߨቁఉ ݂ఈିଵ ߚ) − ߙ + 1).ହ	( ௌ݂ௐ ݂⁄ )ఉିఈൗ  

   (33) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Switching-cycle detail in bipolar PWM showing minor B-H loops. 

Also, the maximum value of the minor loop amplitude 
normalized to the sinusoidal induction amplitude ܤௌ , 
(amplitude of the sinusoidal component of the PWM 
modulated waveform) results: 

  ห∆ܤெ௫ห ௌൗܤ = ݂	ߨ	 ௌ݂ௐ⁄ 	 (34) 

For ݂ = ߙ with typical lamination values ,	ݖܪ	50	 ≅ ߚ ,	1.3 ≅ 2	 and ௌ݂ௐ ݂⁄ = 	200,	one obtains: ெ ௌ௧ = 0⁄ . 15	 
So, 15 % of additional core losses may be expected. 

Taking account of the ܯாௌா	calculated before for unipolar 
PWM, this leads to an overall multiplier of 1.21. 

In order to keep the core losses equal to the ones expected 
for sinusoidal waveforms, the maximum induction should be 
reduced as: 

ௐெܤ  = ௦௨௦ܤ (1.21)ଵ ఉ⁄⁄ 	=   (35)	௦௨௦ܤ	0.9

This justify the common practice of adopting 0.9	ܶ ௐெܤ≥ ≤ 1	ܶ	 for square waveform operation with steel 
laminations that could be used with 1.2	ܶ ≤ ௦௨௦ܤ ≤ 1.3	ܶ 
with sinusoidal waveforms.  

On the other hand, for transformers made on ferrite, for 
typical values ߙ = 1.3	 ߚ , = 2.7  and ௌ݂ௐ ݂⁄ = 	200 , one 
obtains: ெ ௌ௧ = 0⁄ . 00124	 
and the minor loops influence may be neglected, designing 
the transformer as it would be done for unipolar PWM. 

IV. APPLICATION TO ASYMMETRICAL-WAVES CONVERTERS 

Consider the half-bridge chopper shown in Fig. 5. There, ܴை	is the load that will take a DC current which introduces a 
magnetic bias in the core. 

First, the unbiased operation will be analyzed (with ܴை	not 
connected). 

In Fig. 6 the waveforms in the magnetic component are 
presented. There: 

 ிܸ ܶܦ	 = ோܸ	(1 −  (36) ܶ	(ܦ

 หܤሶ ห௩ =  (37) ܤ∆	݂	2

ሶ௦ܤ  = ܤ∆	݂	 ඥܦ	1) − ⁄	(ܦ  (38) 

 
 

Fig. 5. Half-bridge chopper circuit. 
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Fig. 6. Half-bridge chopper waveforms. 

Substituting (37) and (38) in (9): 

ாௌாܯ   = 4.936	(0.2266)ఈ ሾ1)ܦ − ⁄ఈିଵ	ሿ.ଽଷ(ܦ  (39) 

which may be approximated as: 

ாௌாܯ   = 4.9	(0.2)ఈ ሾ1)ܦ − ⁄ሿఈିଵ(ܦ  (40) 

From Fig. 6 and (36) the shape factor is: 

  ݂ = ܸ௦ |ܸ|௩⁄ = 1 2	ඥܦ	1) − ⁄	(ܦ  (41) 

and substituting in (40) gives: 

ாௌாܯ   = 1.225	(0.8)ఈ	 ݂ଶ(ఈିଵ)	 (42) 

In Table I the values obtained from NSE, iGSE and ESE 
(using the simplified expression 40) are compared with 
experimental data from [7]. 

One may conclude that all the proposed modifications of 
the Steinmetz equation (NSE, iGSE, MSE and ESE) give 
results accurate enough for practical design purposes. 

 
TABLE I * 

 

 

 

 

 

 

 

 

 

 

* Experimental measures from [7] 

V. CONSIDERING THE LOSS INCREASE CAUSED BY DC 

MAGNETIZING BIAS 

Most of asymmetrical converters expose the magnetic core 
both to square waveforms and a DC magnetizing bias which 
increases the core-losses. 

For silicon-iron Bozorth [13] gives diagrams plotting the 
losses as function of the alternating induction magnitude and 
the biasing induction. 

For ferrites, experimental data may be found in [2], [14]. 

In some materials, when the AC part of the induction is 
lower than 100 mT, a small amount of  DC bias slighty reduces 
the losses, but a further increase of the DC bias over  100 mT 
produces a remarkable increment of losses [15] - [18]. 

In [12] an empirical model based on experimental 
measures is proposed, giving a multiplier factor ܯ	  to 
multiply the modified Steinmetz equations in order to estimate 
the increment of losses due to the DC bias. This correction 
factor is: 

ܯ   = 1 + |ܤ|)	ߢ ⁄ௌ௧ܤ )ఔ	݁ିకቀ ଶ⁄ ೄೌൗ ቁ	 (43) 

where, Δܤ 2⁄ =   is the equivalent amplitude of the induction	ܤ
to be introduced in ESE (or other modified Steinmetz 
equation), ܤ	is the DC bias induction, ߢ ߥ , , and ߦ  are empirical parameters (almost constants) 
depending on the ferrite material. 

Experimental measures done with materials N27, 3F3, 
3C85 and 3C90 show that ߥ	has not a critical value and good 
fitting is obtained adopting ߥ = 1.6	. Also, with some lack of 
accuracy, the parameter ߦ	 may be expressed as: 

ߦ   = (16 ⁄ߢ )ଶ	 (44) 

This leads to: 

ܯ  = 1 + |ܤ|)	ߢ ⁄ௌ௧ܤ )ଵ.	݁ି(ଵ ⁄ )మ	ቀ ଶ⁄ ೄೌൗ ቁ	 (45) 

From (45) other simplified expressions were proposed in 
[12] in order to avoid the exponential function when inverse 
parameters determination were needed, or for linearization 
into a local operation area where the converter to be designed 
must work. 

The parameter ߢ	 depends on the material, the temperature 
and the frequency, decreasing monotonally as the frequency 
increases (Fig. 7). Usually:  4 ≤ ߢ ≤ 9	. 

In Fig. 8 the effect of the DC bias is shown, and the values 
obtained using (45) are compared with experimental 
measures. 

Unfortunately, usually there are no parameters available in 
data sheets to consider the DC bias effect. If the actual value 
of  ߢ	 is not available and measurements cannot be done, a 
worst case rough estimation of  ܯ	could be made adopting ߢ = 9	 , which gives: 

௫ܯ  = 1 + |ܤ|)9 ⁄ௌ௧ܤ )ଵ.	݁ିଷ.ଵ	ቀ ଶ⁄ ೄೌൗ ቁ	 (46) 
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Fig. 7. Frequency dependence of parameter κ. 

To prevent core saturation, the DC bias and the peak value 
of the AC part of the induction are related by: 

  (Δܤ 2⁄ ) + |ܤ| ≤   (47)	ௌ௧ܤ

From (47) one may understand why is not usual to found 
simultaneously large peak to peak inductions (∆ܤ	) and large 
DC components ( ܤ ). However, in critical continuous 
operation mode of asymmetrical converters it is: 

ܤ   = Δܤ 2⁄ 	 (48) 

VI. APPLICATION EXAMPLES  

A. Application to a half-bridge chopper 

Consider the circuit of Fig. 5 with: ݂ =  ,	ݖܪ݇	25	
 ܸ = 50	ܸ, ைܸ = 5	ܸ, ܴை = 	1	Ω	, and ܥ =  .	ܨߤ	330	
The inductor is made on ferrite 3F3 with an inductance of 

50 micro henrys which yields: Δܫ = ܫ ,	ܣ	2	 = ܦ and ,	ܣ	5 = 0.05	. 
From the manufacturer data sheet one may consider: ܤௌ௧ = 0.35	ܶ	and ߙ = 	1.8	. 
From the above specified current values it results: 

  Δܤ ⁄ܤ 	= 	2/5	 (49) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Measured increment of losses caused by the  magnetizing DC bias 
 compared with values predicted using ܯ. 

As design condition it will be adopted:  

  (Δܤ 2⁄ ) + |ܤ| =   (50)	ௌ௧ܤ	0.9

Therefore, from (49) and (50): 

  Δܤ ⁄ௌ௧ܤ 	= 	0.3	 (51) 

ܤ   ⁄ௌ௧ܤ 	= 	0.75	 (52) 

From (41) one obtains: 

  ݂ = 2.294	 (53) 

Then from (42): 

ாௌாܯ   = 3.1	 (54) 

To consider the DC bias effects, from measures done in 
[12], for the 3F3 material at 25 kHz it is ߢ ≅ 7	. Therefore, 
from (45) one obtains: 

ܯ   = 3.02	 (55) 

Therefore the losses obtained from the manufacturer 
curves (measured for sinusoidal unbiased waveforms) using 
there ܤ = ܤ∆ 2	⁄  should be multiplied by: 

ܯ   = ܯ		.	ாௌாܯ = 9.36	 (56) 

If ߢ	were unknown, using (46) a worst case estimation 
would be obtained as: 

௫ܯ   = 4.53	 (57) 

 Therefore: 

௫ܯ   = ௫ܯ		.	ாௌாܯ = 14	 (58) 

B. Application to a flyback converter operating in 
continuos mode 

The circuit and the characteristic waveforms are shown in 
Fig. 9. In continuous mode the magnetomotive force (m.m.f.) 
is always greater than zero. The output voltage is: 

  ைܸ = (݊ ݊ௌ⁄ )	൫ܦ 1 − ൗܦ ൯	 ܸ (59) 

From Fig. 9.(b) one can obtain: 

  ݂ = ܸ௦ | ܸ|௩⁄ 	= 1 2	ඥ1)ܦ − ⁄	(ܦ  (60) 

Defining the transistor profit factor as: 

  ݂ = ைܲ ܸா௫⁄   (61)	௫ܫ

for a flyback converter operating in continuous mode one 
obtains: 

  ݂ = ሾ1 − ߜ) 2⁄ )ሿ	1)ܦ −  (62) (ܦ
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Fig. 9. Application to a flyback converter, (a) converter circuit, (b) 
 waveforms in continuous mode operation. 

where, 

ߜ   = 	ܫ∆ ⁄௫ܫ 	 (63) 

is a parameter used in converter design [19]. 

The optimum duty cycle is the one maximizing the profit 
factor of the transistor. That is: 

௧ܦ   = 1 2⁄ 	 (64) 

giving: 

  ݂௧ = ଵସ	ሾ1 − ߜ) 2⁄ )ሿ		 (65) 

For the optimun duty cycle (60) gives: 

  ݂ = 1 (66) 

and from (42) one obtains: 

ாௌாܯ   = 1.225	(0.8)ఈ	 (67) 

On the other hand: 

ܤ   = (Δܤ 2⁄ ) +   (68)	|ܤ|

From the Ampère law: 

  Δܤ ⁄ܤ = 	ܫ∆ ⁄௫ܫ 	=   (69)	ߜ

Therefore: 

  (Δܤ 2⁄ ) ⁄ௌ௧ܤ = 		ܤ) ⁄ௌ௧ܤ ) ቀߜ 2ൗ ቁ	 (70) 

From (68) and (70): 

	|ܤ|   ⁄ௌ௧ܤ = 		ܤ) ⁄ௌ௧ܤ ) ቂ1 − ቀߜ 2ൗ ቁቃ	 (71) 

Substituting (70) and (71) in (45) gives: ܯ = 1 +	  
ߢ+ ቂ1 − ቀߜ 2ൗ ቁቃଵ. 	ܤ) ⁄ௌ௧ܤ )ଵ.	݁ି(ଵ ⁄ )మ	ቀఋ ଶൗ ቁ		ቀ ೄೌൗ ቁ 

 (72) 

For typical values, 

 ݂ = ߜ  ,	ݖܪ݇	50 = 		ܤ  ,	1/3 ⁄ௌ௧ܤ = 0.8	  
adopting material 3C85 with ߙ = 1.8	and ߢ = 8.5	, working 
at  ܦ = ௧ܦ = 0.5	it results: ܯாௌா = 0.82	 and  ܯ = 	2.73 

Then, ܯ = ܯ		ாௌாܯ = 2.24 

which is the factor to multiply the losses obtained from the 
manufacturer curves for sinusoidal waveforms. For material 
3C85 with: ݂ = ௌ௧ܤ  and   ݖܪ݇	50 	= 	0.35	ܶ 

one obtains, 

௦	ܤ  = Δܤ 2⁄ = ቀߜ 2ൗ ቁ		ቀܤ ௌ௧ൗܤ ቁ	ܤௌ௧ = 0.047	ܶ	 
Therefore: 

ி	  = ி௦	ܯ = 22.4	ܹ݉/ܿ݉ଷ		 
 

REMARK: 

In many converter topologies it is: 

  ݂ = 1)ܦ		(ఋ)ܭ −  (73) (ܦ

Substituting (73) in (40) gives: 

ாௌாܯ   = 4.9	(0.2)ఈ	ൣܭ(ఋ)൧ఈିଵ	 ݂ఈିଵൗ  (74) 

Usually there is a trade off between ߜ	and the transistor 
power factor. Decreasing ߜ	allows to improve the transistor 
power factor but lead to an increase of the core volume [19]. 

Fixing both ߜ	and the core volume, from (60) and (74) 
one may conclude that improving the profit factor adopting 
the optimum duty cycle will also reduce the core losses. By 
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this reason, small duty cycles should be avoided and it is a 
common practice to adopt transformer isolated topologies 
even if output voltage isolation is not required. 

VII. CONCLUSIONS  

For transformers for PWM symmetrical converters, made 
with laminated steel, only a core-loss increment of 15 % 
should be expected regarding a classic transformer operating 
with sinusoidal voltage waveform. 

For symmetrical high frequency switching converters the 
clasical Steinmetz equation, or the manufacturers curves 
measured using sinusoidal waveforms, may be used as a core-
loss estimation accurate enough for practical first prototype 
design. 

For those symmetric converters operating with 
asymmetric waveforms and superimposed DC magnetization 
bias [20], both loss multiplying factors proposed in this work 
should be used. 

For asymmetrical converters, one of the modified 
Steinmetz equation must be applied when the duty cycle is far 
of the optimum value, and some prediction of the core-losses 
increment due to the magnetizing bias should be made when 
the DC bias is comparable to the magnitude of the alternating 
induction. 

In most asymmetrical converter topologies, with duty 
cycle near 0.5, the experimental curves for sinusoidal 
operation will be accurate enough for loss estimation, but the 
DC bias influence must be considered. 

ACKNOWLEDGMENT  

Without the support and help of Professor Charles R. 
Sullivan from Thayer School of Engineering at Dartmouth 
College, this work would not have been possible. However, 
any errors or misinterpretations eventually found, are 
exclusively attributable to the author. 

REFERENCES 
[1] C. P. Steinmetz, "On the law of hysteresis", AIEE Transactions, vol. 9, 

pp.3-64, 1892, Reprinted under the title "A Steinmetz contribution to 
the AC power evolution", introduction by J. E. Brittain, in Proceedings 
of the IEEE 72 (2) 1984, pp. 196-221. 

[2] E. C. Snelling, “Soft ferrites: Properties and applications”, 
Butterworths, U.K.,1988. 

[3] R. Ridley and A. Nace, “Modeling ferrite core losses”, Switching 
Power Magazine , January 2002. 

[4] A. Van den Bossche and V. C. Valchev, "Inductors and transformers 
for power electronics", CRC Press - Taylor & Francis, U.S.A., 2005. 

[5] W. G. Hurley and W. H. Wölfle, "Transformer and inductors for power 
electronics: Theory, design and applications", Wiley, 2013. 

[6] M. K. Kazimierczuk, "High-frequency magnetic components", Wiley, 
2009. 

[7] A. Van den Bossche, V. C. Valchev and G. B. Georgiev, "Measurement 
and loss model of ferrites with non-sinusoidal waveforms," 2004 IEEE 
35th Annual Power Electronics Specialists Conference (IEEE Cat. 
No.04CH37551), Aachen, Germany, 2004, pp. 4814-4818 Vol.6, doi: 
10.1109/PESC.2004.1354851. 

[8] J.Reinert, A. Brockmeyer, and R.W. A. A. De Doncker, “Calculation 
of Losses in Ferro- and Ferrimagnetic Materials Based on the Modified 
Steinmetz Equation”, IEEE Transactions on Industry Applications, vol. 
37, no. 4, Jul./Aug. 2001. 

[9] Jieli Li, T. Abdallah, and C. R. Sullivan, "Improved calculation of core 
loss with nonsinusoidal waveforms", in Conference Record of the 2001 
IEEE Industry Applications Conference, 36th Annual Meeting, 2001, 
pp.2203-2210. 

[10] M. Albach, T. Durbaum and A. Brockmeyer, "Calculating core losses 
in transformers for arbitrary magnetizing currents a comparison of 
different approaches," PESC Record. 27th Annual IEEE Power 
Electronics Specialists Conference, Baveno, Italy, 1996, pp. 1463-
1468 vol.2, doi: 10.1109/PESC.1996.548774. 

[11] K. Venkatachalam, C. R. Sullivan, T. Abdallah and H. Tacca, 
"Accurate prediction of ferrite core loss with nonsinusoidal waveforms 
using only Steinmetz parameters," 2002 IEEE Workshop on 
Computers in Power Electronics, 2002. Proceedings., Mayaguez, 
Puerto Rico, USA, 2002, pp. 36-41, doi: 10.1109/CIPE.2002.1196712. 

[12] H. E. Tacca, “Extended Steinmetz Equation”, Thayer School of 
Engineering, Dartmouth College, Hanover, NH, Estados Unidos, Oct. 
2002 (DOI: 10.13140/2.1.2837.5363). 

[13] R. M. Bozorth, “Ferromagnetism”, IEEE Press (Classic reprints), 1994. 

[14] A. Goldman, "Magnetic components for power electronics", Kluwer 
Academic Publ., U.S.A., 2002. 

[15] F. Dong Tan, J. L. Vollin and S. M. Cuk, "A practical approach for 
magnetic core-loss characterization," in IEEE Transactions on Power 
Electronics, vol. 10, no. 2, pp. 124-130, March 1995, doi: 
10.1109/63.372597. 

[16] A. Brockmeyer, "Experimental evaluation of the influence of DC-
premagnetization on the properties of power electronic ferrites," 
Proceedings of Applied Power Electronics Conference. APEC '96, San 
Jose, CA, USA, 1996, pp. 454-460 vol.1, doi: 
10.1109/APEC.1996.500481. 

[17] A. Brockmeyer and J. Paulus-Neues, "Frequency dependence of the 
ferrite-loss increase caused by premagnetization," Proceedings of 
APEC 97 - Applied Power Electronics Conference, Atlanta, GA, USA, 
1997, pp. 375-380 vol.1, doi: 10.1109/APEC.1997.581478. 

[18] V. C. Valchev, A. P. Van den Bossche and D. M. Van de Sype, "Ferrite 
losses of cores with square wave voltage and DC bias," 31st Annual 
Conference of IEEE Industrial Electronics Society, 2005. IECON 
2005., Raleigh, NC, 2005, pp. 5 pp.-, doi: 
10.1109/IECON.2005.1569013. 

[19] H.E. Tacca, “Flyback vs. Forward Converter Topology Comparison 
Based upon Magnetic Design”, Eletrônica de Potência , Vol. 5, no. 1, 
May 2000, Brazil. 

[20] S. A. Quinteros, H. E. Tacca, M. Pupareli, "2 kW DC/DC converter for 
battery charger with half-bridge conversion topology - Convertidor 
CC/CC de 2 kW para cargador de baterías, con estructura de conversión 
en medio puente", XXIII Congreso Argentino de Control Automático 
(AADECA 2012), Records in CD , 3-5 Oct. 2012, Buenos Aires, 
Argentina. 

[21] Dartmouth Magnetic Component Research Web Site, 
http://engineering.dartmouth.edu/inductor. 

 


