
11th International Symposium on Computer Music Multidisciplinary Research.
University of Plymouth, Plymouth, 2015.

Methods for the analysis of
rhythmic and metrical
responses to music in free
movement trajectories.

Naveda, Luiz, Martínez, Isabel Cecilia, Dámenson, Javier,
Pereira Ghiena, Alejandro y Herrera, Romina.

Cita:
Naveda, Luiz, Martínez, Isabel Cecilia, Dámenson, Javier, Pereira Ghiena,
Alejandro y Herrera, Romina (Junio, 2015). Methods for the analysis of
rhythmic and metrical responses to music in free movement
trajectories. 11th International Symposium on Computer Music
Multidisciplinary Research. University of Plymouth, Plymouth.

Dirección estable: https://www.aacademica.org/martinez.isabel.cecilia/84

ARK: https://n2t.net/ark:/13683/pGAb/raw

Esta obra está bajo una licencia de Creative Commons.
Para ver una copia de esta licencia, visite
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es.

Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso
abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su
producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite:
https://www.aacademica.org.

https://www.aacademica.org/martinez.isabel.cecilia/84
https://n2t.net/ark:/13683/pGAb/raw
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es


 

Methods for the analysis of rhythmic and metrical 
responses to music in free movement trajectories 

Luiz Naveda1, Isabel C. Martínez2, Javier Damesón2, Alejandro Pereira Ghiena2, 
Romina Herrera2, M. Alejandro Ordás2 

 
1 School of music - State University of Minas Gerais 

2 Laboratorio para el Estudio de la Experiencia Musical. Facultad de Bellas Artes. 
Universidad Nacional de La Plata 

luiznaveda@gmail.com  

Abstract. The process of retrieving meaningful information from rhythm 
responses to music imposes several methodological challenges. For one side, 
the indivisible connection between body actions and the musical action confines 
the musical phenomenon in a closed action-perception cycle. For another side, 
attempts to examine internalized rhythm descriptions require a sort of action 
and body movements generally mediate actions. In this study, we propose 
strategies for the analysis of movement responses that are capable to retrieve 
emergent rhythmic and metrical structure encoded in free movements, which 
are less constrained by experimental designs and less prone to assumptions. The 
first proposed technique processes zero-crossing events across velocity patterns 
to uncover directional changes in the movement trajectories. The second 
technique uses local accumulation of instantaneous velocity to describe the 
profiles of metric engagement abstracted from the morphology of the 
movement trajectories. The techniques help to trace comparisons and build new 
representations of emergent embodied metrical structures. The paper discusses 
the possibilities and new perspectives using case studies of free spontaneous 
movement responses to Argentinian chacarera and Afro-Brazilian samba music.  
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1   Introduction 

The theory that supports study of qualities related to rhythm, tempo and meter has 
been generally successful in connecting a set of general rules to the individual musical 
experiences, performances and more recently, technological developments (e.g.: MIR 
algorithms). The relevance of this set of knowledge manifests inside every dance 
club, across every musical hall or concert where real people feel and move their 
bodies in a ways that are similar to what is predicted in models in the theories of 
musical meter. 

The theory of rhythm has been proposed a set of properties and rules assumed to 
govern metrical and rhythmical structures in music. Though these properties have 
been originally proposed in the form of axiomatic “rules of preference” [1], recent 
evidences indicate that rhythm and meter understanding emerge from symmetrical 
structures, hierarchies and structures [3, 4, 2] and the human cognition is able to 
perceive and elaborate on them [5–7]. However, it is also known that the musical 



 

renditions that support the emergence of tempo and meter categories exhibit a great 
variability and complexity [8–10]. Such a level of complexity may explain, for 
instance, why almost every attempt to define what is a musical beat or bar involves a 
reference to body movements [e.g: 11] and very often  refer to periodic movement of 
the foot or hand. Whether periodic body movements (1) result from metaphors and 
schemes of rhythm parsed in the auditory system or (2) emerge from the 
interdependence between music cognition and the human motor system, it is a 
problem that still needs to be better approached from a pool of different disciplines. 
What remain unclear is how to identify qualities of movements in action, how they 
are chained in the motor system and how movements are connected to culture. 

The excessive dependency of rhythm studies on the “tapping” literature (including 
tapping, clicking, speaking) isolates the theory from a myriad of other manifestations 
of body engagement. The reduction of rhythmic behavior into to a set of percussive 
tasks may represent a dangerous bias towards a poor assessment of rhythm responses. 
Such dependency and the lack of interaction with ethnomusicological research might 
also hide the reported importance of movement and dance in many cultures and 
reproduce a mind-body division that is inconsistent with the actual understanding of 
human cognition. 

1.1   Hidden assumptions in modeling rhythm responses 

The nature of the musical matter imposes several methodological challenges. The 
connection between body actions and the musical action itself seems intractable 
because it confines the musical phenomenon in a closed action-perception cycle: 
assessment to subjects’ responses is vastly collected through actions, which are 
inevitably mediated by body movements that are hardwired to mechanisms of 
perception. Additionally, body movements in response to music may not be easily 
recorded, detected or even perceived by the subjects. Movements being activated 
across the body are often occluded by other body parts or hidden by the limitations of 
the measurement technique (e.g. subtle torso sways, small toes’ movements). Not 
enough, the specificity of subjects’ cultural background, their cultural habits and the 
environment drastically interfere in the motivation or obstruction of movements. The 
learned motor programs and the physiological or psychological state of the subject 
also influence the response to music. In summary, accessing musical understanding 
through its precise time points and categories of perception remains a problematic 
issue for researchers and problems are definitely connected to the understanding of 
movement behaviors. 

Prior the theories of embodiment [12–14] and enaction [15, 16], the separation 
between auditory and motor domains would not represent a significant problem: the 
dualisms of action-perception and mind-body perspectives were a widespread 
consensus. Most of the tapping literature or the general theories of rhythm and meter 
were assembled from the results that partly reflect these dualisms in the experimental 
design. Until recently, even the motor theories used to approach human movement 
were organized according to a set of generalized motor program theory [17], highly 
criticized  for this of consistency in relation to dynamic interactions present in the 
action-perception cycles [18]. The common solutions to tackle the problem of 
tracking rhythm “perception” in experimental designs was to accept a set of 



 

assumptions that simplify the measurements, shape results according to simple 
responses and facilitate the use of “out-of-the-box” methodologies imported from 
sciences. Examples of these kinds of assumptions might involve the following 
widespread practices among many others: 

 
1. Assumptions of metrical and pulse isochrony - The assumption that 

subjects recognize periodicities of any metrical level as a sequence of evenly 
spaced metrical accents in time. 

2. Assumptions of tapping efficiency - The assumption inter-onset-intervals 
collected from tapping or percussion tasks represent a sufficient account of 
rhythmical structure and rhythm engagement. 

3. Assumptions of hand preference - The assumption that hands, wrist or 
fingers1 can are the only mediators of the rhythm responses and that other 
body parts would not add further information. 

4. Assumptions of unimodal experience - The assumption that rhythm 
engagement is expressed as a channel of sequence of events. 

5. Assumptions of homogeneity of variances and independence – the vast 
application of statistic central measures to compare rhythm results should 
imply the assumption that results that deviate from the mean come from 
random disturbances (homogeneity of variances) and that subsequent 
results do not affect each other (independence).  

 
Though every assumption imposed to an observation should imply in the 

generalization of the results and increasing the limitation of the study, most of the 
literature rarely acknowledges the impacts of assumptions [see 19 for a discussion on 
the topic]. More precisely, assumptions generally indicate a choice of experimental 
design: a choice for configuration of control of the variables, limitation of the 
universe and isolation of sources of bias, which results in detachment from the 
complexity in the real world. Together with the complexity, a great part of the validity 
of the experiment is decreased, which impacts on subsequent applications.  

1.2   Definition of the problem  

The design of experiments involves choices across the trend between 
generalization and control of variables. Less control in the experimental design results 
in more analytical complexity but more external validity [see 19 for a discussion on 
the topic]. Due to the constraints of traditional statistic analyses, the limitations and 
assumptions discussed above influence the definition of the subject’s task. Typical 
tasks procedures that involve rhythmic responses are based on restrictions such as 
hand movements, synthetic rhythmic stimuli, and artificially repetitive actions. The 
shift to a different method for capturing and analyzing data demands a different 
method that is able to capture events in open forms of movement actions. A move to a 
more general understanding of rhythm would then require a less restrictive rhythm 
task and methods that detect underlying rhythm structures that are not explicitly 

                                                             
1 The subtleties of the performance of tapping are often ignored in the 

measurements  



 

instructed in the task. How free and spontaneous movement responses to musical 
rhythm would contribute to the understanding of rhythm mechanisms? How to 
uncover rhythm events or metrical descriptors in free movement responses to music? 

In this study we focus on strategies that identify metrical accents and metrical 
structures in free movement responses to music. The strategies are designed to 
describe and evaluate the occurrence of kinematic events in the morphology of free 
movement trajectories in the 3D space. The events are organized according a 
representation metrical structure imposed by the music stimuli. The aim of this study 
is to provide alternatives to the typical methods conduct research on rhythm and 
improve the potential generalization of the results. 

In the next section, we provide a general overview of approaches in the field of 
study. In the following sections, we describe the mechanisms of two methods 
illustrated by case studies. 

2   Previous work 

 
Since there is a justified tendency to prioritize control of variables, the literature on 

methods to analyze spontaneous and free responses to musical rhythm is very limited. 
Authors tend to invest time and resources in a predictable analytical process by 
shaping the tasks to an experimental design that isolates the problem from the bias. 
Human creativity, in this contexts, is often seen as experimental bias. However, few 
exceptions thrive to cope with the complexity of design and analysis in the attempt to 
approximate the experimental approaches to real-world phenomena.  

For example, Toiviainen and colleagues [20] approached the problem of 
spontaneous full body movements to music by means of a selection of methods. PCA 
was used to detect movement primitives in spontaneous movement across body parts 
and subjects. The analysis of mechanical energy and kinematic periodicity revealed 
associations of metrical levels to specific body parts and the tendency to reflect 
tactum levels in the vertical axis. Zentner and Eerola [21] studied rhythmic behavior 
in pre-verbal infants in a context where infants cannot easily reproduce tasks and 
spontaneous responses are more reliable. They found that human infants 
spontaneously display “rhythmical patterns with a regular beat, and isochronous 
drumbeats”, which was not expected for this age. Styns et al [22] analyzed walking 
movements while listening to music. Although walking movements differ from 
spontaneous movements, the relevant spontaneous response to music may still be 
present in the data. The study suggests that real musical stimuli (in contrast to 
synthetic or metronomic pulse) induce more walking activity and a number of 
indications of a resonance effects (which takes into account the typical 2 Hz 
frequency often reported for walking cycles). Demos et al. [23] studied spontaneous 
coordination of movements with music and a partner. The study shows a preference 
for social coordination even when musical stimulus is present.  

The majority of empirical studies that access rhythm responses seem to rely on 
discrete intentional actions applied to a surface (normally a sensor), such as hand 
tapping or percussion with an object. The inter-onset-interval (IOI) of the successive 
actions provides a measurement of the period of repetition, used to further 



 

comparisons and processing. The extensive tapping literature [see 24 for a review] 
supports this type of approach, which seems to be the most straightforward way to 
describe rhythm and metrical timing. However, tapping generates information about 
rhythm engagement at the cost of shaping subjects reaction to music to a very 
reductionist task. Other attempts to uncover periodicity in spontaneous movement use 
linear methods based on autocorrelation such as the ones found in [25, 26] or non-
linear methods such as Periodicity Transforms [27] as applied in [28], for the analysis 
of traditional popular dances. 

So far, there is no agreement or consistent discussion about the specific methods to 
cope with the unpredictable trends in spontaneous responses to music. Measures of 
periodicity or frequency (e.g.: autocorrelation, FFT) may not reflect the nature of 
metrical engagement (c.f. subjects do not rely or analyze frequency components of 
their actions). Therefore, the discrete detection of movement events and inter-onset 
times seems to still provide the elements necessary to describe rhythm events. 
Continuous features such as the estimation of physical forces applied to the limbs may 
also contribute to describe metrical engagement. Velocity as a component that follows 
the dynamics of mechanical energy may provide a clue of the forces applied to 
spontaneous movements, as used in [20, 29]. The methods proposed here result from 
these two forms of movement descriptions. 

3   Methodology 
In this study we present two features that contribute to representation of emergent 
metrical properties of free movement patterns or spontaneous movements in response 
to music.  The methods take as starting point the position of points or position of rigid 
bodies in the time domain, registered in the 3D Cartesian representation space by 
means of motion capture systems (see section Procedures).  
 
Spontaneous movement patterns impose extrinsic and intrinsic problems for 
interpretation and analysis. The extrinsic characteristics of movement recordings 
registered in 3D Cartesian space do not provide a clear indication of the position of 
motion events in time. The dynamics of motion descriptors (displacement, velocity, 
acceleration) overlap each other in several levels of event information. Simple 
detection of changes in the raw trajectories results in meaningfulness data reflecting 
the interaction between the artificial coordinate system of the motion capture and the 
subject’s movement. Unintentional changes in movement profiles might interfere in 
the results by inserting false-positives in places and orientations imposed by 
coordinate systems of motion capture devices.  
 
The intrinsic characteristics of movement profiles are even less clear. Researchers 
cannot really access intentionality of movement actions: one cannot assume that a 
change in velocity or direction is conscious, intentional and reflects a musical choice. 
The lack of detailed instructions imposes a considerable level of uncertainty and 
variability to the performance and data. Variability spreads not only over events in 
time but also influences the positioning, directionality and flexibility of performance. 
 
However, the approximation of the data information to real-world data problem 
greatly impacts in the expected validity of the observations. Challenges in this context 



 

involve the interpretation of variability and isolation of sources of bias. The use of 
extensive recording and strategies to improve multiple repetitions of the task [e.g.: 
single subject analysis in 30] provide the granularity necessary to uncover tendencies 
in the data. The choice for less controlled experimental designs results in describing 
tendencies that are more connected to real-world cases rather than designing 
experiments for statistical significance with limited relationships with real-world 
phenomenon. 
  

3.1  Feature 1 – Level of accumulative velocity (LAV) 

The subjective notion of “effort” applied to human movement seem to be a very 
important component for the associations between body movement and music. The 
main theories of dance such as the Laban theory and analysis [31] involve references 
to effort and weight. In the context of spontaneous responses to music, motion 
descriptor fulfills the demand for a continuous feature that express the energy 
deployed by the subject. 

The mechanical concept of physical “work” would be the best candidate to express 
subjective effort but the actual procedures to calculate it can be misleading due to 
biomechanical constraints [32]. The mechanical energy and its components -- kinetic 
and potential energy – might be also good candidates because their variation relates to 
the concept of mechanical work. However, the calculation of mechanical energy from 
3D trajectories involves a number of impractical assumptions and parameterizations 
(such as the measurement of the mass of body parts). A practical solution in our case 
would be to concentrate on the simple relationship between the kinetic energy and the 
dynamics of the instantaneous velocity. More specifically, kinetic energy (K) is 
calculated by the following formula, where m stands for mass and v for velocity. 

 
 

 (1) 
 
 

In order to provide a metrical account of the velocity in the spontaneous movement 
to music we opted to organize the profile of accumulative velocities across the 
structure of the musical meter, annotated in the stimuli. In short, we visualize velocity 
according to the annotated segments of the musical meter imposed by the stimuli. 

 
 Metrical segments are time sequences annotated using the models of meter used 

in the annotation. For example, if the model conveys only beats (tactus), the metrical 
segments will provide a window of 1 beat around the time point of every beat. Figure 
1 displays the schematic view of the process. First the time points of the metrical 
elements are selected. They provide a temporal window (+ am -1/2 of the metrical 
segment) in which the analysis will take place. Second, all values of instantaneous 
velocity inside the temporal window are accumulated and registered. The process 
extends until the end of the movement segment.  
 



 

 
 
 

Fig. 1. Process of calculation of the velocity weightings for each metrical level. 
 
The accumulation of the velocity patterns across the metrical positions in the stimuli 
generates a distribution formed by all measurements of accumulation of velocities in 
the metric levels. However, these levels do not directly reflect the effort but a 
dynamic of the energy at the metric levels. Higher velocity patterns indicate that the 
limbs were was traveling fast across trajectories and not necessary inducing the 
sensation of physical. Lower velocity accumulation may indicate that the limbs were 
in rest or in process of deceleration (which produces substantial effort). The 
occurrences of changes in velocity patterns may (high-to-low or low-to-high) are 
better indications of the deployment of physical effort.  

3.2 Feature 2 - Density of directional changes (DDC) 

 
Differently from traditionally controlled task (such as tapping), free spontaneous 

movement responses to music exhibit a great diversity of trajectory shapes, changes 
of orientation of the subject and directional changes of the limbs. Sharp changes of 
trajectory direction might be the only cue to indicate intentional musical metrical 
accents in the morphology of movement trajectories. However, the coordinate system 



 

imposed by motion capture devices is not natural and does not provide a reliable and 
comprehensive root system of directional components. Approaching the variation of 
orientation of the limbs with thresholds does not seem an elegant solution because it 
would involve the definition of constants (thresholds) not described in the literature. 
Our solution to uncover meaningful directional changes involves four steps 
(illustrated in figure 2): (A) First, we reconstruct the orientations system using the 
linear transformation processed using Principal Component Analysis (PCA), which 
practically results in the linear transformation of the three-dimensional vectors into 
components that best explain the variance in the trajectories.  After the PCA process, 
the (B) changes of direction in each component are detected by detecting the zero-
crossings in the first order time derivative (cf. velocity). The (C) estimation of time 
positions between the time points of the zero crossings and the beginning of metrical 
structure (8 beat in the figure) allows the representation of a histogram of changes of 
direction across metric levels. The (D) histogram represents the density estimation of 
directional changes at each metrical element. The word density was chosen not only 
to reflect the construction of an estimate (a density estimation) but also to 
acknowledge the possibility of different, non temporal annotation categories, 
including annotations in space (otherwise, in our particular case, the probability 
would be better defined as a frequency). 
 

 
 



 

Fig. 2. Schematic process of the processing stages for the feature detection.   
 

Note that the detection of directional changes is applied to all three PCA 
components, reflecting the transformation of 3D trajectory vectors. They represent 
orthogonal changes of directions in respect to the coordinate system that best 
represents the variance of the data. In other words, the method collects changes of 
directions organized across dimensions that best represent the morphology of the 
movement sequence.  

However, the variances of the trajectories are not necessarily equal. For example, 
the concentration of variances in one component indicates that the movement profiles 
are organized as a “line”. As such, variances distributed in two components indicate a 
“planar” morphology while evenly distributed variances across the 3 components 
indicate “spherical” explorations of the trajectory space. The different variances also 
imply that directional changes in the first component (higher variance), for example, 
denote changes in a component that is more important, visible and variable than the 
others. Figure 5 shows the density of directional changes for the left-hand of a subject 
and its respective trajectories in the 3D Cartesian space. Note that the variances 
indicate a large prevalence of the first component, reflecting the line-like shape of the 
movements. 

 

 3.3 Complementary nature of the features 

The features proposed here provide two complementary descriptions of the 
metrical and rhythmic characteristics of spontaneous free movements, apart from 
kinematic and dynamic summaries describing the structure of the trajectories.  

The Level of accumulative velocity reflects the continuous energy in place at each 
metric level. Its profile and variability across metric levels indicates where the subject 
engage into energetic profiles of movement and how they vary in relation to the 
cycles of metric levels. The Density of directional changes complements the image 
of metrical engagement by indicating the density of discrete events in the metrical 
structure. Density of events and continuous energy profiles provide relevant 
information to compare kinematic and kinetic cues, respectively. The following 
section shows the application of the methods to examples. 

4   Case Studies 

The case studies demonstrate the use of the proposed methods by means of examples 
of spontaneous free movement responses to music. The recordings involve the 
tracking of movements synchronized with musical stimuli. For illustrative purposes, 
only 2 subjects were used to illustrate the methods. The procedures and details are 
briefly described below. 



 

4.1 Procedures 

The motion capture recordings were realized with an Optitrack system composed 
of 6 infrared cameras and 14 infrared markers placed at the torso, head, left and right 
hands of the subjects. The musical stimuli were composed of three clicks (used to 
synchronize motion capture recordings) followed by excerpts of samba (Brazil) and 
chacarera (Argentina) rhythm patterns. The subjects were trained musicians and 
dancers.  

The recordings involved two main parts: In the first part the subjects were asked to 
test free movement strategies in relation to the music. In the second part the subject 
was instructed to chose one movement strategy and repeat it for 60 seconds.  The 
recordings were realized in Brazil and Argentina using the same setup. Argentinians 
and Brazilians participated in the experiment. All the subjects declared their consent 
and filled in questionnaires about their experience. Further details of each subject will 
be described in the analyses. 

4.2 Case study – Cumulative velocity level (CVL) 

Fig. 3 shows the distributions of cumulative velocity levels across the categories of 
metric levels, which are modeled as a 4 beats x 4 sixteenth-note levels (16 metrical 
elements). For the music style samba, used for stimulus, this model represents 2 
musical bars (2/4). The data involves 12 repetitions collected from the recordings. 
Note that the box-plot graphs are not used to analyzed statistical significance (e.g. 
ANOVA) but to demonstrate the distributions and variance. 

Fig. 3. Levels of accumulated velocity for a Brazilian subject, left hand. Stimulus: samba music 
(N=12). 

The example shown in Fig. 3 illustrates how velocity patterns across metrical 
levels expose more than simply metrical periodicity. The subject presents peaks of 
velocity at every 4th 16th-note and seems to stop abruptly at every beat, (following 
and subsequent release). This periodic beat pattern seem to be also accompanied by a 
marginal variation of peak velocity every 2 beats. The feature exposes the contrast 
between symmetry of the models of meter and real embodiment of metrical structures. 



 

As seen here, a typical beat periodicity unfolds in several asymmetries that may only 
reflect individual, non-generalizable specific ontology of meter for this style.  

Fig. 4 shows the second example repeating the same type of graphical 
representation for an Argentinian subject. The stimulus was a typical chacarera 
sequence. Chacarera style involves a percussion set often accompanied by other 
instruments. It is rooted in a 12/8 bar, displayed in the graph. 

 

Fig. 4. Levels of accumulated velocity for an Argentinian subject, left hand. Stimulus: 
chacarera music (N=12). 

 
The first characteristic exposed in the graph is the variability encoded in the 

distributions for this subject. Variability represents two possibilities: the lackclear 
relationships between velocity patterns and metrical structure or hidden relationships 
inside the distributions. Note that the interdependence of the samples is 
acknowledged. The metrical engagement implies relationships that may induce a 
change or repetition of patterns across the repetition of metric cycles. This 
relationship – a metrical relationship – encodes interdependencies across distant 
metrical segments as much as interdependencies across subsequent segments. 

Other interesting explanations may illustrate how complex the analysis of 
subjective engagement to musical meter can be. The expressive standard deviation 
from 1.1 to 1.3 indicates that the first three 8th-notes may be a place without clear 
orientation, pattern or metrical characteristics. After the first half beat the velocity 
pattern stabilizes in a less variable sequence, slightly reaffirming the 3 beat. In this 
case, metrical engagement may be rendered not in terms of position or velocity 
formulas but in terms of more flexible or more constant velocity patterns. Another 
characteristic is that the changes of velocities seem to be less abrupt than the example 
in Fig. 3. 

4.3 Case study - Density of directional changes (DDC) 

Fig. 5a and b illustrate the results of the calculation of Density of directional changes. 
Fig. 5a shows the trajectories placed in relation to their original orientation. After the 
PCA processing, in Fig. 5b, the components act like a rotation of the original 
coordinates, which places the principal component (higher variance) in the vertical 
dimension. Fig. 5b also shows the metrical events – changes of direction --  calculated 



 

using zero-crossing processing. As seen in the figure, the strong concentration of the 
variances in the first component (variance = 0.9) reflects the “line-like” shape that 
characterizes this example. As such, changes of direction in the principal component 
are stronger and are likely to indicate more significant and intentional metric accents.  

 

Fig. 5a Representation in the 3-dimensional space showing the trajectories before the PCA 
analysis and the stick figure representation connection between head, torso and hands 5b 
Representation in the 3-dimensional space showing the trajectories and events of change of 
direction in the coordinates after the PCA transformation. The size of the markers indicates the 
magnitude of the variance related to each component. The size of the arrows are proportional to 
the variances: 1st component = 0.9, 2nd component = 0.08, 3rd component 0.007. 

Fig. 6 shows the histograms of directional changes for each component (graphs 1 to 
3), across the categories of metrical segments, global histogram (graph 4) and its 
respective variances. The variance of each component must be taken into account for 
the proper interpretation of the histograms. The third graph shows that the principal 
component accounts for 90% of the variance is responsible for the axis that shapes the 
trajectories in a kind of line. Note that regardless the shape of the trajectories the 
histogram of events in the 3rd graph indicates the affirmation of beat levels. The 
density of events close to the beat indicates that changes of direction are always 
situated around beat or slightly delayed. Although isochrony and symmetry are 
important concepts for the theories of musical meter, we observe here that the 
enaction of beat level (tactus) as changes of directions is flexible and temporal 
precision is relative. It is possible that controlled tasks force subjects to adopt an 



 

attitude towards temporal precision while spontaneity reflects a more diverse 
perspective of metric engagement. The interpretation of the global histogram must be 
realized with care, because events resulted from components with lower variances 
have the same unitary contribution of the components with higher variance. 

 

Fig. 6. Histograms displaying the density of events or changes of direction for each component 
(graphs 1 to 3) and global histogram showing the sum of the three histograms (graph 4). The 
histogram comprises 64 bins (empirical), which represents, for the actual stimuli, a metrical 
definition of 1/16 beat segment (4/64). 

5 Discussion and concluding remarks 

The objective of the features proposed in this study is to develop meaningful 
descriptors of the rhythm encoded in free movement responses. As discussed in the 
introduction, traditional methods used to access rhythmic engagement in the past were 
developed to comply with the experimental choice for more control variables and 
consequently less connection with the phenomena in the real world.  

The change of experimental perspective in this study demands new forms of 
analyses that are able to collect meaningful information without limiting the emergent 
properties of the phenomena. Emergent properties of musical movements may include 
a number of characteristic blocked by previous assumptions in highly controlled 



 

experiments, such as: variability in timing, multi-level metrical engagement, 
uncertainty and variability as a signalization of metrical cycles among others, already 
discussed in the introduction. 

It has been widely reported that the human motor system is characterized by 
variability [33] and that variability performs important functions that help the motor 
adaptation to contexts and motor efficiency. The dynamic system hypothesis [17], for 
example, sees the variability in the motor domain as a key to promote fast adaptation 
to unpredictable demands of the contexts. Such a perspective clearly sheds light to the 
typical musical or choreographical tasks that musicians and dancers are subjected to. 
Variability in dance and music may provide the necessary adaptations to cope with 
the performance, improvisation and group playing. Variability, as an artistic value can 
also be responsible to start creative solutions, as often noticed musicians working with 
improvisation forms.  

 
The kind of features presented here present some advantages for the analysis and 

experimental design related to rhythm analysis: 
 
1) The analysis does not depend on discrete marker positions: subjects are free to 

realize movements 
2) Movements are not significantly changed by task such as to press keys or 

switches.  
3) Tasks do not depend on the indication of isochronous time positions 
4) Results can be easily accumulated across repetitions in time and subjects. 
5) Temporal and kinematic variability can be described and incorporated into the 

results and modeling. 
 
However, a different perspective of assumptions also impacts on the summaries or 

statistical procedures involved in the analysis of datasets. The lack of control of some 
variables implies that most of the results cannot be interpreted using traditional 
central measures. Data visualization techniques, clustering, machine learning 
approaches among others may improve the reporting of results in large data-sets. 
Simple replication of experiments as suggested in [19] or Single subject analysis [30] 
may also be used to approach statistically relevant results. 

The case studies presented in this work show that the features proposed can 
provide a rich representation of the phenomena as continuous, spatial or musical 
representation. The characteristics of data expose the tendencies and the granularity 
across measurements that can provide richer visualizations of metrical engagement. 
The results show relevant individual characteristics that may contribute to a micro-
analytical perspective of meter in the form of individual representation of metrical 
images. 

Future work may be realized in several aspects of the techniques. Large datasets of 
movement recordings can be analyzed in the search for richer models of metrical 
engagement. The calculation of features can be improved to adapt weighting options, 
normalization and statistical description of the datasets. Features can also be 
implemented for real-time processing for interactive systems. Novel graphical 
visualizations may help to uncover hidden patterns in large datasets.  
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