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Topological voiceprints for speaker identification
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Abstract

Despite its noninvasive nature, subject identification by voice is not as popular as other biometric procedures (i.e. fingerprint-
ing). In part, this is due to the difficulty of establishing how close is close enough when comparing spectral features. In this work,
we address this issue by showing how to characterize spectra by means of sets of integers, borrowing topological tools used in
the theory of dynamical systems. On the other hand, we report an empirical result: within a relatively small bank of speakers,
there are subsets of integers that seem to strenghten the speakers’ identity information. These results suggest a new direction in
the identification of subjects by voice: one in which arrangements of integers define voiceprints that stand on their own, despite
any acceptance/rejection thresholds.
© 2004 Elsevier B.V. All rights reserved.

K

1

t
s
s
l
v
d
t

w

to
other

of
rint,
the

va-
ally
dy-

tion
pe-
ns

input
sics
the

0
d

eywords:Speaker recognition; Biometrics; Topological indexes

. Introduction

Many techniques used in the problem of voice iden-
ification are based on spectral properties[1]. The rea-
on is that during the production of voiced sounds, a
pectrally rich sound signal (produced by the modu-
ation of airflow by the vocal folds) is filtered by the
ocal tract. The resonances of this passive filter are
etermined by ergonomic features of the speaker, and

herefore can be used to identify him/her.
The purpose of this work is twofold. On one hand,

e borrow from the theory of dynamical systems a
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set of tools of topological nature that will allow us
characterize the spectra of voiced sounds. On the
hand, we report an empirical result: with the use
these topological indexes we can define a voicep
i.e. a set of integers uniquely associated (within
extent of our exploration) with a speaker.

The production of human voice involves a wide
riety of physical processes, from turbulence (typic
present in non-voiced sounds) to low dimensional
namics (like in voiced sounds). During the produc
of voiced sounds (like vowels), the airflow induces
riodic oscillations in the vocal folds. These oscillatio
generate time varying pressure fluctuations at the
of a passive linear filter, the vocal tract. The phy
of voiced sounds is usually described in terms of
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standardsource-filtertheory[1–3]. The separation be-
tween source and filter assumes that the feedback into
fold oscillations is negligible, an hypothesis that has
been extensively validated for normal speech regime
[4]. The spectrally rich input pressure presents har-
monics of a fundamental frequency of about 100 Hz.
The vocal tract selects some frequencies out of these
harmonics. In this way, the spectrum of a voiced sound
carries information about the vocal tract and therefore
it is used as a biometric characterization of the speaker.

A typical approach in the field is to use feature vec-
tors with quantities that characterize different subjects,
perform multidimensional clustering and separate the
clusters associated with the different subjects by means
of some metric on the feature vectors. In the framework
of the spectral characterization of the voice, a way to
perform an identity validation is to construct a distance
between properties computed from utterances (distor-
sion measures), such as the integral of the difference
between the two spectra on a log magnitude. Another
distorsion measure is based upon the differences be-
tween the spectral slopes[1] (first-order derivatives of
the log power spectra pair with respect to frequency).

It is interesting to notice that the spectral compari-
son is sometimes implemented by means of another set
of coefficients calledcepstrumthat are just the Fourier
amplitudes of the spectral function. In other words, the
spectrum is treated as a “time” series wheref plays the
role of time. This suggested to us that the techniques
used in the theory of dynamical systems in order to
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Fig. 1. Three examples of log(|H(f )|2) using the maximum entropy
approximation for two different speakers (using light and dark lines
for each of them) over the complete period of the function. Beyond
the secondformant, the spectra naturally cluster in two different
groups. The original sound segments correspond to the spanish vowel
[a] extracted from normal speech utterances. Sampling rate isr =
1/� = 11, 025 Hz.

of data using a delay embedding[8,9]. In Fig. 1 we
show the log power spectra of three vocalizations of
two speakers. Notice that these spectra naturally clus-
ter in two sets. Could the topological properties of their
embeddings be a pertinent tool for identity validation?

In order to answer that question, we will deal with
relative rotation rates, topological invariants intro-
duced to help in the description of periodically driven
two-dimensional dynamical systems[5], which can
also be constructed for a large class of autonomous
dynamical systems inR3: those for which a Poincaré
section can be found.

2. Topological voiceprint implementation

In order to describe the vocal tract frequency re-
sponse, we computed the maximum entropy approxi-
mation of the power spectrum for each of the stored
voiced segments. This can be performed by calculat-
ing m linear predictorcoefficients[10] for the voiced
segment{yn}, sampled with rater = 1/�:

yn =
m∑

k=1

dkyn−k + xn, (1)

where thelp coefficientsd1, d2, . . . , dm are assumed
constant over the speech segment, and are chosen so
thatxn is minimum. Theselp coefficients can be used
to estimate the power spectrum|H(f )|2 as a rational
ompare two periodic orbits can be used in the ana
f voiced sound spectra. In particular, we are intere

n exploring the use of topological tools, designed
apture the main morphological features of orbits
ardless of slight deformations[8].

In the analysis of three-dimensional dynamical s
ems, the periodic orbits are closed curves that
e characterized by the way in which they are k

ed and linked to each other and to themselves[5–7].
ince uniqueness theorem warranties that period
its cannot cross, linking and knotting properties c
ot change and threrefore can be used as fingerp
or the purpose of applying this analysis to the p

em of speaker identification we will treat the pow
pectrum of voiced sounds|H(f )|2 on a log scale as
eriodic string of data, using techniques commonly
lied to the analysis of periodic “time” series. A thr
imensional orbit can be constructed from this st



M.A. Trevisan et al. / Physica D 200 (2005) 75–80 77

function withmpoles:

H(f ) = d0

1 − ∑m
k=1 dk eik2πf�

(2)

which is periodic in [−1/2�, 1/2�], the Nyquist in-
terval. Several examples of reconstructed spectra are
shown inFig. 1 for two male speakers of the same
age.

The log of power spectral function log|H(f )|2 was
approximated using Eq.(2) with m = 13 coefficients.
This value results from the optimization of our speaker
recognition implementation over a database of 108 ut-
terances. With this number of poles, the reconstructed
spectra capture the main features of the formant’s enve-
lope. The fluctuations in the spectra of the same speaker
and the same voiced sound (Fig. 1) correspond to vari-
ations arising from normal speech.

The function|H(f )| is symmetric with respect to
f = 0. Therefore, only one half is relevant to our anal-
ysis. We washed out the difference between log|H(0)|
and log|H(1/(2�))|, adding a linear function and sub-
stracting the average. The final functionF(f) is periodic
with half the original period. InFig. 2, a few examples
of F(f) for different utterances of the same speaker are
shown, along with areferencefunction.

The resulting functionF(f) can be embedded in
phase space using many different techniques[11]. We

Fig. 2. Delay embedding (δ = 40 Hz) of the functionF (f ) computed from ments
of the orbit between succesive crossings of the Poincaré section.

Fig. 3. Periodic functions used for the embedding from a sin-
gle speaker (solid lines) and a universal reference (dotted line).
These functions are constructed from the original log(|H(f )|2) as
in (Fig. 1), using half of the original period.

used aδ delay embedding. An example of such an orbit
usingδ = 40 Hz is displayed inFig. 3.

These delay-embedded orbits in phase space
(F (f ), F (f − δ), F (f − 2δ)) always display a
hole around the lineF (f ) = F (f − δ) = F (f − 2δ).
Therefore, a good Poincaré section is given by the
semi-plane defined byF (f ) = F (f − 2δ);F (f − δ) ≤
F (f − 2δ).

A family of topological tools are available in order to
classify and characterize these orbits. We explored both
the self relative rotation rates and the relative rotation
rates with respect to a reference orbit. The self relative
one voiced fragment. Different line types represent different seg
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Fig. 4. Vowelprints for three male speakers of nearly the same age, constructed from short vowel segments (∼100 ms) of around 10 utterances
taken in different enrollment sessions.

rotation rates showed sensitivity to natural fluctuations
of speech spectra. Since we were computing relative
rotation rates of an orbit relative to itself, slight varia-
tions in the height of some formants were reflected as
different topological indexes. On the other hand, rela-
tive rotation matrix empirically proved to contain more
robust numbers if computed against a constructed ref-
erence orbit. This reference was derived from the for-
mants of a plain, non-articulated vocal tract (azero
hypothesisfor voiced sounds). Our election of the ref-
erence as an open-closed tube of 17.5 cm is based in
the observation that the geometry of a real vocal tract
can be thought as departures from an open-closed tube.

In the following, we will refer to the number of the
intersections of an orbit with the Poincaré section as
its period. Each section of the orbit in between succes-
sive intersections will be called segment. The relative
rotation of these embedded spectra can be calulated
in the following way: assume that the orbits have pe-
riods pA andpB. We build arelative rotation matrix
M ∈ ZpA×pB , where elementMij corresponds to sum-
ming the signed crossings of theith segment of the
orbit A relative to thejth segment of the orbitB. The
signed crossings can be calculated projecting the two
orbits onto a two-dimensional subspace. In that pro-
jection, tangent vectors to the two periods just over the
cross are drawn in the direction of the flow. The upper
tangent vector is rotated into the lower tangent vector,
assigning a+1 (−1) to the crossing if the rotation is
right (left) handed.
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(i, j) are reached. The elements of matrixM, on the
other hand, allow us to keep track of the rotation of
each pair of segments, and therefore can be used to
identify spectral variations for each pair of formants of
the utterancei. In order to construct a signature of the
speaker, we begin characterizing each of his/her vow-
els. We do so superposing all the relative rotation ma-
trices corresponding to the same voiced sound and the
same speaker, and looking for coincidences (rotation
numbers which do not change when computed from
different utterances). These coincidences are named
robust rotation numbers. We calledvowelprintthe ar-
rangement of the robust rotation numbers placed in the
original matrix sites. We called avoiceprintthe collec-
tion of the speakers’vowelprints. In Fig. 4, we display
three vowelprints corresponding to the spanish vowel
[a] for three male subjects of nearly the same age.

3. Results and discussion

In order to test our topological approach to the prob-
lem of speaker recognition, we performed the following
implementation. A voice bank was constructed as fol-
lows. We recorded six repetitions of a sentence contain-
ing the five Spanish vowels for each one of 18 speakers.
Then, we build topological matrices from short frag-
ments (∼100 ms) taken from those vowels. The bank
consisted of thevoiceprintscomputed from the topo-
l

nce
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p th the
c er is
i an-
d rint.
I ust
n rre-
This relative rotation matrix is related to the relat
otation rates through:

ij(A, B) = 1

pApB

pApB−1∑

k=0

Mi+k,j+k (3)

aking periodic boundary conditions for the mat
elative rotation rates (Eq.(3)) are averages over t
atrix elementsMij until the same initial condition
ogical matrices for each speaker.
Topological matrices computed from an uttera

y a speaker who claims to be in the bank are c
uted. These candidate matrices are compared wi
orresponding vowelprints in the bank. The speak
dentified as a member of the bank only if the set of c
idate matrices fully matches a single stored voicep

n this context, full matching means that all the rob
umbers in all the vowelprints are present in the co
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Fig. 5. Sketch of the recognition procedure: two candidates (we display a singlevowel printfor each of them) are compared with the bank of
molds. A speaker is identified as a member of the bank if the set of his/her candidate matrices fully matches a single stored voiceprint. The grey
areas in the molds correspond to positions in the matrices that contain robust numbers. Identification of a candidate as a member of the bank
(i.e., full matching) requires the numbers in those positions of the candidate’s matrix being equal to the robust numbers in the mold.

sponding candidate matrices. This process is illustrated
in Fig. 5, for a single vowelprint. In turns, each of the
108 utterances of our bank was used as a candidate for
identification. We obtained perfect recognition perfor-
mance (no false positive/negatives).

Our choice of a subset of the rotation numbers in the
construction of a voiceprint could suggest that some
information is lost. In order to test this hypothesis, we
replaced eachvoiceprintin the bank with the collection
of the complete individual matrices used to construct
them, in such a way that all the topological information
is kept. Each of the 108 utterances of our bank was used
as a candidate for identification. We evaluated the num-
ber of coincidences between the candidate matrices
and the set of matrices characterizing each speaker in
the bank. The result was a lower performance method,
since several false positives and negatives were found.
The topological robust numbers seem to strenghten the
relevant spectral information, discarding the unuseful
information carried by the indexes that vary the most
from one utterance to the next.

We also compared our topological approach with
a näıve metric method, in which the quadratic dis-
tance between spectra is calculated and coincidences

are computed below an optimized threshold. In this
case, thevoiceprintof each speaker in the bank was
replaced by the spectral functions used to construct the
rotation matrices. Again, the performance of this met-
ric method as a speaker recognizer was worse than the
topologic one.

Our approach presents many interesting advantages
over the usual ones. In a metric strategy (in which some
distance between spectra are computed), a threshold
has to be defined, and this is a bank dependent quan-
tity. The use of topological voiceprints constructed with
integers, along with the full-matching criterion, intro-
duces a novel strategy, which is bank-independent, with
no-threshold needed to verify the acceptance.

Implementations of the topological approach run-
ning on standard PCs also showed to be very fast. Once
an utterance is recorded, voiced sounds segments can
easily be extracted. Their relative rotation matrices can
be built using simple cross-counting algorithms[8] and
voiceprints are then computed by simply counting co-
incidences over a collection of small matrices. On the
other hand, once the bank is constructed, the whole
recognition task consists in the matching of small ma-
trices like the ones showed inFig. 4.
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We explored the change in the number of robust
numbers as a function of the training set size. We found
that for training sets larger than 10 vowels, the number
of robust numbers converge to approximately 8. These
numbers describe the relative heights of the peaks of
the spectral function of a voiced sound with respect to
the spectrum of a reference, that do not change from
utterance to utterance. The robust numbers of a sub-
ject in our base were compared with the topological
indexes obtained from an utterance recorded when the
subject had a strong cold. We found that the informa-
tion in the matrix of robust numbers degrades grace-
fully: only the indexes associated with the highest fre-
quencies changed, while a large part of the voice print
remained unaltered.

In summary, we propose a novel approach to the
problem of subject identification by voice based on
topological indexes. The strategy is inspired in a suc-
cessful program of characterization of recurrences in
dynamical systems[8]. We found empirically that a set
of indexes can be used to characterize subjects, since
they do not change from utterance to utterance and are
different from subject to subject within the bank ex-
plored. Larger studies are required to compare the per-
formance of this approach to more mature techniques,
but our strategy allow us to advance towards a threshold
independent solution of the problem of subject identi-
fication by voice.
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