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Semiconductor lasers with optical feedback present a regime in which power dropouts are observed. Al-
though this regime has been extensively studied, there is no agreement about whether the dropouts are deter-
ministically or stochastically generated. In this paper we will study the statistics of time intervals between
dropouts assuming noise-driven simple excitable models. We explain the appearance of characteristic times in
the first return map4.S1063-651X99)00408-0

PACS numbds): 05.45~a, 05.90+m, 42.55.Px

[. INTRODUCTION excitable when it displays the following featuréa} it has a
stable equilibrium statgp) if the system is perturbed from
Semiconductor lasers with optical feedback display a rictits equilibrium state beyond a certain threshold, it relaxes
variety of behaviors that are interesting both from laserafter a long excursion in phase space, &rdhe size of this
theory and from a nonlinear dynamics point of view. A Wide relaxation becomes independent of the size of the per-
W|de|y Studied but not yet fu”y understood phenomenon isturbation pI’OVided the Iatter echeedS the .thl’eshold value. In
the so-called low-frequency fluctuati¢hFF) regime, which ~ the case of the LFF regime, wide relaxations correspond to
occurs for moderate to strong feedback levels. In this regimedropout events. In this paper, we will analyze two simple
the laser output intensity suddenly drops to almost zero anfoise-driven excitable dynamical models. The first one is a

then gradually recovers to its original value. These dropou{\r/]vo-g_ln:enspnal hsystem n V‘t’)h'fh the thr?st?lold IS gt:uveg by
events occur at irregular time intervals and become mor&€ dis an_ce(ln phase spage etween a stablé point and a
frequent as the pump rate is increased Saddle point. We chose to begin our study with this model

) L for historical reasons, following the dynamical scenario pro-
Because both size and shape are quite similar from on

lse t ther. the time int | bet them i osed in Ref[1]. Later, we will move on to build a three-
pulse o another, he time intérval between them IS & MOSy; o sional model in which the distance between the attrac-
interesting observable. Statistical analysis of these time spag

: " . or and an unstable periodic solution acts as a threshold.
ings has been perform¢d—4]. Specifically, histograms and o hoth models, dropouts will be obtained as noise per-

first return maps present a remarkable feature: when thg,ihs the equilibrium states. We will show that, as long as we
dropouts are very rare the return map shows a cloud of pointge interested in the longer time scales of the systsi-
and the histogram is a single peak with an exponential taiba”y, the time between dropolfsthe two-dimensional
but, for higher currents values, certain characteristic timesnodel is enough to reproduce the statistics observed in the
arise[1,2]. experiments. However, the interspike histograms can display
There are several approaches to understanding this behaseme structure in the shorter time scalesiltipeaked distri-
ior. Most of them developed from the Lang-Kobayashi equatution), as the injection current is raised. In order to explain
tions, which explains the LFF as a form of high-dimensionalthis feature, we need to extend our dynamical model one
chaos[5,6]. Recently, a different approach to the problemmore dimension. We will be careful to check that the three-
was proposed by Giudicet al. [1] based on experimental dimensional model also reproduces the statistical features
observations. According to this interpretation, the laser beebserved in the two-dimensional one.
haves as an excitable system and the noise plays a dominant This paper is organized as follows. First, in Sec. Il, we
role in the appearance of the LFF. describe a simple model for an excitable systgéatiowing
The confrontation between these two paradigms highf1], a system close to an Andronov bifurcatipand study its
lights a central problem in nonlinear dynamics. Once onenterspike time distribution once noise is added. In Secs. llI
acknowledges that deterministic rules are able to providend IV, we address the issue of multipeaked histograms. We
complex dynamical behavior, how can we recognize whetheprogressively build a three-dimensional excitable model that
a dynamically complex system is purely deterministic? Theallows for the shorter time scales of the system and repro-
construction of refutable quantities is by no means trijigl ~ duces the interspike histograms and first return maps re-
In this paper, we investigate the behavior of differentported in the literature. The relationship between these two
noise-driven excitable systems, and analyze the interspikenodels is discussed in the last section, where we include our
time distribution that each model predicts. We compare the&onclusions.
behavior of these observables as parameters are changed, and
compare them with the experimental data reported in Refs.
[1,2].
The definition of an excitable behavior is not uniform  Several groups have reported extensive experimental
throughout the literature. Here we assume that a system &udies of interspike time distributions for semiconductor la-

II. TWO-DIMENSIONAL EXCITABLE MODEL
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FIG. 1. Partial bifurcation diagram and phase portraits for the Time (arb.unie)
system described by Eqgfl) and(2). In regions | and Il there are FIG. 2. Probability distribution of time between dropout events
three fixed points: a node, a saddle, and a repulsor. Crossing thg the model described by Eqgél) and (2) for parameter values

separatrix to region lll, the saddle and the attractor collgpse €,=0.26 ande,=0.45 and with Gaussian noise added in the
dronov bifurcatiofn. The two lower regions display qualitatively variable with zero mean and varianc® 2 10~ 3.
different behavior. In region | the unstable manifold of the saddle
approac_:hes a limit cycle_. In region Il the unstable manifold of theexponential tail for the longer ones. The most probable es-
saddle is the stable manifold of the node and the system behaves as . . . TR
. cape time can be viewed as a first characteristic time of the

an excitable one.
system.

Usually, for excitable systems it is assumed that spikes

. .. _are only triggered from a quiescent state. However, in our
ences therein In [2], a comparison between the predlct|onsmodel it is possible to have an early-triggered spike if a

g:]g ?deeerli(rﬂg::Y;dr::rsourE;rif L:Sg;gzza%%s;'eiqléﬁ?gfial int_rajectory crosses the stable manifold of the saddle at some
ters ikg distributions. dis Iap in a érameterpran e wher oint before reaching the node. In such a case the interspike
P pay, P g ime equals the time of flight of a trajectory following the

{_hi; ﬁeov?/ﬁ;a;\:j%?é:sblmOdal structure. This is the first ISSU%nstable manifold of the saddle. _This se_cond characteristic
. . . - . time superimposes another peak in the histogram.
We are interested in whether this statistical behavior can Figure 2 shows a typical two-peaked histogram obtained
be reproduced within the framework of the hypothesis Offrom numerical simulations of the systeft) and (2) with
Ref. [1], i.e., a noise-driven excitable system close to anparameter values, =0.26 ande,=0.45. The leftmost peak
Andronov bifurcation. This bifurcation is locally a saddle- is related to the 1earli/-triggerezd sbikés and its importance
Q&db?eorgzrlri}g}/gIgptggengr&:zglfeg}gglf?g ggth; 2%‘;??1(; decreases as we move far from the global bifurcation that

bifurcation, a stable limit cycle remains as a successor of thlelzmItS regions I and Il in Fig. Lfor sufficiently high values

previous heteroclinic connectiofregion Ill of Fig. 1. A of e, we recover the single-peaked distribution predicted by

third fixed point is needetlinstable focusto feed the saddle '€ Usual escape rate thepryfhe rightmost peak corre-
. N sponds to escapes from the node and has an exponential tail.
point and the stable limit cycle before and after the An-

dronov bifurcation. respectivel The analysis of how interspike time distributions are
!  Fesp Y. changed as we move the parameter values will be reported
The equations we are studying 464

sers with feedback in the LFF reginteee[1,2] and refer-

elsewherd11].
, Then the excitability scenario is, in one of its simplest
X=Y, (D) incarnations, highly compatible with the existence of two
characteristic times in the interspike time distribution. From
Y ' =X—y—X3+Xy+ e+ €,x2, (2)  a geometrical point of view, the appearance of the two-

peaked distribution is related to the existence of an invariant

with (x,y) € R, ande;, e, R™. A partial bifurcation dia- manifold that splits the flow. Specifically, in this model the
gram for this system is displayed in Fig. 1. stable manifold of_the saddle acts as a §eparatrix betweer) the
Within the excitable regiméegion Il of Fig. ), an initial ~ early-triggered spikes and the spikes triggered from a quies-
condition close to the node, subject to the action of noiseCent state.
may cross the stable manifold of the saddle to relax after a
long excursion in phase space. We associate this pulse with a
dropout event of the laser intensity. In order to obtain excit-
able pulses in our model, we added a Gaussian white noise In the same paper in which Giudici and co-workers pro-
term in Eq.(1) with zero mean and varianceD2= 10 3. posed the excitability scenario, histograms and return maps
The rate of escape from the node is ruled only by localof the time intervals between successive pulses were dis-
properties, and can be described in terms of Kramers’ forplayed. When dropouts are very rare the return map shows a
mula[10]. The theory also predicts a wide peak in the prob-cloud of points and the histogram is a single peak with an
ability distribution, with a fast rise for short times and an exponential tail but, for higher current values, certain char-

Ill. THREE-DIMENSIONAL EXCITABLE MODEL
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acteristic times arise, leading to a multipeaked histogram and
a symmetric grid in the return map. From the experimental
observations reported in Réfl] it is clear also that the time
between the spots in the grid can be associated to a charac- ,_;
teristic time of the experimental system: the external cavity
round trip. Recently[12] a high-resolution inspection of the
dynamical evolution of the laser intensity was reported. The
recovery after a dropout presents fast intensity pseudoperi-
odic pulses at the round-trip time of the external cavity.
Thus, in order to reproduce the detailed statistics, we must
make allowance for this fast-pulsing phenomenon.

In this section, we want to extend our dynamical picture ,z
to reproduce the appearance of a grid structure in the return T_i
map of the interspike times within the framework of excit-
ability plus noise. Since we have to account for a character-  z=x+d
istic time, which appears to be associated with fast pulsing
oscillations, we have to move beyond our two-dimensional FIG. 3. Dynamical sketch based on E¢3)—(5). Construction
model. We present the derivation of an excitable system i9f az switch; the thick line is the nulicline of E¢5) and the arrows
three dimensions. This model also simulates the typicaindicate the fast relaxation of tievariable.
shape of averaged pulses in the LFF regime.

We first analyze the main features of the dynamical be- €z'=(1-2%)(z—x—d)— ez, (5)
havior of the laser intensity. Typical time series for this vari-

able in the LFF regime was presented in3,4]. In order to  wheree is the singular parameter auds a fixed parameter
clarify this behavior, we split the temporal variations of the controlling the reinjection of the orbits. Whea is small
laser intensity into three part$a) a slow recovery of the engugh, the nullcling’ =0 consists of the roots of a cubic
signal up to an almost constant valiildup), (b) a variable  polynomial inz which has a shaped hysteresis cycle in the
period of time during which the intensity is nearly stationary middle, as displayed in Fig. 3.

in that.value, andc) f[he dro_pout process in _vvhich the signal  The first two equations, Eqs3) and(4), govern the mo-
drops in a short period of time. In a dynamical reconstructedion in the stable branches lying near the perturbed planes
system the buildup can be associated with an orbit approach— + 1. For a sufficiently weake value, the motion in the
ing a fixed point. This orbit stays in a neighborhood of theypper (lower) stable branch is approximated by the vector
fixed point due to a certain trapping procggsrt (b)], and  field f(x,y) [g(x,y)].

then rapidly escapes from this regifpart (c)] and is rein- In order to map our problem to this dynamical sketch, we
jected again through the buildup process. One can also nofg|ate the dropout and buildup processes to the two stable
an oscillatory behavior near the fixed point, which suggestganches in the-shaped manifold and take as ouvariable

its rotational nature. These will be the building blocks of ourg properly scaled variable proportional to the laser intensity.

dynamical sketch. _ _ ~Then, as illustrated in Fig. 4, we have the following temporal
One feature that is clearly displayed in the LFF series is

the alternation between fast and slow dynamics. This is very
common to a wide variety of systems, from chemical reac-
tions to electronic devices. The simplest example of a systen .-~~~
with such an alternation of different time scales is a relax- ~~~
ation oscillator. Typically, there is a fast variable that relaxes

to a z-shaped slow manifold, where the upper and lower
branches are stable. In these branches the motion is ruled k

the slow variables and the orbits can eventually reach the
turning point of thez shape and jump to the other stable
branch. If we choose a folded two-dimensional slow mani- .-
fold as shown in Fig. 4, we can combine two planar flows .
(one at each stable branch of teshape with the fast z
switching mechanism. This idea was fully developed by
Deng[13] to construct homoclinic orbits and chaotic attrac-

tors in three-dimensional flows. Here we use the simplest
z-switching mechanism: a singular perturbation of a trans-

verse crossing of two planes z+ +1 and a diagonal plane FIG. 4. Combination of the switch (3)—(5) and the slow sub-
atz=x+d. The set of equations reads systems[on the upper stable branch the linear flow governed by
Egs.(6) and(7) and on the lower stable branch the planar system

(8) and (9)]. For a suitable parameter choice the whole system
X' '=(1+2)f,(X,y)+(1-2)g1(X,Y), (3 behaves as an excitable one: if we perturb an initial conditioR in

by an amount greater than the distance to the safdtbe orbit

relaxes after a long excursion in phase space following the hetero-
y' =(1+2)fo(X,y)+(1—2)gx(X,y), (4) clinic connectionR.
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behavior(a) In the upper plane there is a slow recovery of If we choose the subcritical Hopf bifurcation instead, the
the x variable until the orbit reaches the turning point on themain features of the statistics of time intervals studied in the
slow manifold =1-—d). (b) The orbit falls in a vicinity of  preceding section are retained but, as we will show in the
the fixed point and spends a variable amount of time befor@ext section, our dynamical sketch predicts also the grid in
crossing towards thr negative direction(c) The x variable  the return map. We first present a simple planar flow that
rapidly drops until the orbit reaches the turning pointxat undergoes a subcritical Hopf bifurcation and then justify this
=—1-d and then turns back to the upper plane. Thus weparticular choice.
have recovered our initial analysis for the temporal evolution
of the laser intensity in terms of the system described by Egs. ,
(3)-(5). Now, we need an explicit form fof(x,y) and X =Y, ®
g(x,y) in order to simulate our caricature of the LFF process.
We choose the simpler form for the buildup of a variable: L a2
a linear flow converging to a stable node aty) = (b,0). Y =XE Ry OXTm Xy ©
f1(x,y)=—a(x—bh), (6) Here,y and ¢ are fixed real positive valugss controls the
distance between the two fixed pointsg,¥)=(0,0) and
X,y)=(1/5,0)]. Our control parameter will bg., which
f2(x,y)=—cy. (7) \(/ar)igs (gver a)ll] real values. P ¥
Let us analyze the bifurcation points in our linear param-
If we setb>1—d, the fixed point is located beyond the eter spaceg). As we require, the fixed point at the origin is
turning point of thez switch. Thus, for a sufficiently small always a saddle while the other fixed point loses its stability
value of €, every trajectory near the half plafex<(1 at u=yl 5. At this parameter value we find, after a suitable
—d),z=1] moves towards the positive direction until it  coordinate change, a Hopf bifurcation with a positive leading
reaches the edge of tlzeswitch. term. This means that there is some interval in parameter
Deciding which is the better form for the planar flow in space(whose upper limit isy/8) where an unstable limit
the lower branch g(x,y)] is not a simple task. Here one cycle encircles the stable focus. This cycle collapses at the
must decide if the dropout process is a deterministic or difurcation with the fixed point and when>v/4, an un-
noise-driven one. There is no clear evidence of which bifurstable focus remains.
cations occur with the appearance of the LFF and with the As one can check numerically, the two fixed points and
qualitative change in the return map. the unstable limit cycle are the only limit sets of the planar
In the excitability scenario we only need one saddle poinsystem(8) and(9). Then we have at least three topologically
and one stable focudocated at a higher value of) in the  inequivalent flows. These are shown in Fig. 5.
lower stable branch of our dynamical sketch, as shown in For low values ofux we have no limit cycle and one
Fig. 4. Actually, with these two elements the requirementshranch of the unstable manifold of the saddle feeds the stable
for the excitable system specified in the Introduction are satfocus (region |). In the three-dimensional modé&d)—(5) as-
isfied (a) A stable equilibrium point existéhe focusP). (b) sociated with this flow, every orbit reinjected is captured by
If we perturb(in the x variable an orbit near the equilibrium the focus. Only the noise can drive the orbit towards negative
point by an amount greater than the distance between thevalues, so we are in an excitable regime. Note that in this
fixed points, this orbit may cross the stable manifold of thecase the stable manifold of the saddle represents the excit-
saddle §), escape towards the turning point of the lowerability threshold. Region Il instead has an unstable limit
branch of thez switch, and return to the equilibrium state cycle, which is connected with the stable manifold of the
after a long excursion in phase spa@.Further, as the great saddle. Within this region, the behavior of the three-
relaxation is originated by the-switch mechanism it be- dimensional system is also excitable, but now the limit cycle
comes independent of the size of the perturbation in the slowcts as the threshold. As we will see later, the branch of the
variable. unstable manifold of the saddle lying in thke-0 half-plane
The experimental observations reported show that the ratembraces the unstable cycle, thus hindering the perturbed
of dropout events increases as the control parameter is raisedbits and driving them towards the turning point of the
until the oscillations becomes almost periodic. In our sceswitch. This is a very interesting point because we are near a
nario this can be achieved going from an excitable regime tsubcritical Hopf but there is no bistabilityve do not need a
relaxation oscillations in the hysteresis cycle. This transitiorstable limit cyclg. Finally, after the Hopf we enter region IlI
can be made through two different local bifurcations of thewhere the unstable focus ejects all reinjected orbits and we
planar flowg(x,y): a saddle-node bifurcatiofthe stable fo- obtain sustained oscillations in the three-dimensional system.
cus becomes a node before his collapse with the saddle, as It remains a last bifurcation point separating regions | and
discussed in the previous sectiaand a subcritical Hopf bi- Il. Since we have studied all local bifurcations, this must be
furcation (the focus loses its stabilityIn both cases the or- a global one. Regarding the topologically inequivalent phase
bits lying on the lower stable branch are ejected towards theortraits associated with each region, it appears that the
turning point after the bifurcation. stable and unstable manifolds of the saddle point must cross
Actually, both bifurcations are global, due to the hetero-at some parameter value. When this happens, we obtain a
clinic connection(R in Fig. 4). In the saddle-node case, after saddle loop; a homoclinic connection encloses the stable fo-
the merging of the fixed points, a limit cycle remains and wecus. Furthermore, as we cross the global bifurcation point
recover the Andronov bifurcation. from region Il to region I, the unstable limit cycle grows in
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FIG. 5. Bifurcation diagram and phase portraits for the planar
system described by Eq¢8) and (9). For u<(6/7)(y/5) one 200 y
branch of the unstable manifold of the saddle feeds the stable focus
(region ). As u is increased the branches of the stable and unstable
manifolds lying on thex>>0 half-plane approach each other until a 0

saddle loop is formed. In region Il an unstable limit cycle is born 0 200 400 600 800 1000
and it encloses the stable focus. Whers y/ 8 a subcritical Hopf Ttn) (arb. units)
bifurcation occurs. In region Ill the focus is unstable and the stable £\ 7. statistics on the time between dropout events for the
manifold of the saddle twists around it. excitable regime £=0.04). (&) Histogram in log scale(b) First
return maps.
size and period until it reaches the saddle conneciidrich
has infinite periogl This also explains why the unstable the Melnikov function. In fact, it is possible to rewrite Egs.
manifold of the saddle embraces the limit cycle in region II.(8) and (9) as a time-independent perturbation of a Hamil-
One can explicitly calculate the approximate parametetonian problem. When the Melnikov functiofritten as a
value at which the global bifurcation takes place by means ofunction of the parametersanishes, we would have a ho-
moclinic connection[14]. Hence, we obtain the valug
1 . . . . . . T . . =(6/7)(y/ 8). This is in good agreement with the real value
at which the global bifurcation occurs.
Now we return to our three-dimensional sketch. It can be

0
A \} checked that for a small enougtthe equilibrium points and
— the main features of the planar system described above per-
£ Ll sist in a neighborhood of the lower branch of thehaped
:- slow manifold. Indeed, inserting Eq&)—(9) into Egs.(3)—
3 3f (5) we can derive analytical expressions for the nullclines
* and graphically demonstrate the persistence of the fixed
4r points.
S5} 4
IV. RESULTS
® 10 20 80 40 50 60 70 8 2 100 We simulated the system ruled by Ed8)—(9) adding

Time (arb. units . . . ; . .
( ) Gaussian white noise in thevariable with zero mean and

FIG. 6. Time evolution of thex variable in the three- Variance D. The parameter values are the following:

dimensional system with the following parameter values:0.3, =0.3, b=0.3, c=1.2, d=0.6, e=0.1, =20, y=1, and
b=0.1,c=1.2,d=0.6, €=0.1, =20, y=1, =0.0, and noise D=10"4, and were chosen to fit the functional form of the

level D=10"* corresponding to an excitable regime. experimental dropouts. In Fig. 6 we present the time evolu-
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o _ FIG. 9. Detail of the flow near the unstable focus when the
60 - R 7 characteristic times arise. An uncertainty in the point where the
' T orbit is reinjected leads to an uncertainty in the number of twists
around the fixed point.

in the return map, as the orbits can make a few more or a few
less twists before the dropout. The fact that the spot distri-
bution is symmetric and that there are no other structures
aside from the characteristic times is a clear indication that
noise is still playing a non-negligible role in the time statis-
tics. We are only viewing the old fuzzy spot through a grid
of privileged times.

Then we claim that the statistical properties of the time
between pulses in the LFF regime can be explained as noise
e 4 (or a form of high-dimensional chapscting on a very
20 20 0 m 0 = simple deterministic structure, which is excitable in some
T(n) (arb. units) parameter region. The bifurcation which limits this excitable

region, can be a saddle-node d@@ Andronov bifurcation,

FIG. 8. Statistics on the time interval between dropout event@oba"y speaking if we are only interested in the longer
after the Hopf bifurcation £ =0.1).(a) Multipeaked histogramb)  {imes scales, but a subcritical Hopf as we want to reproduce

T(n+1) (arb. units)

30} §

201} %

First return map showing a grid. the detailed structure of the interspike histograms.
) ] ) ) ) Finally, we want to point out that the model analyzed in
tion of thex variable in the excitable regionu(=0). this section does indeed allow us to reproduce also the bimo-

Next, we performed a statistical analysis of the time beja| structure of the interspike histograms observed in the
tween dropouts, taking up to Y@vents. As expected, in the analysis of the two-dimensional toy model discussed in Sec.
excitable regimeregions | and Il we obtain a peaked his- | |n Fig. 10 we display a histogram displaying this feature
togram and a fuzzy return mdpee Fig. 7. For a wide range  for the parameter values in the caption. Notice that in this
of parameter values within region Ilifelaxation oscillations  case, in the approximation for the planar flow in the lower
we have obtained a histogram and a return map with wellpjane, we are in parameter region | of Fig. 5. Thus, the in-
defined characteristic times. This is displayed in Fig. 8 forariant manifold that splits the flow into the ones associated
u=01. with the fast and slow pulses, is the stable manifold of the

The easiest way to understand the appearance of theggqdle(a bidimensional manifold in our three-dimensional
characteristic times is to look carefully what happens neagystem. In this parameter region we still have rapid oscilla-
the fixed point(an unstable focysin Fig. 9 we show a close tions around the stable focus and, consequently, a collection
view of the vicinity of the focus fo.=0.1. It is little after  of characteristic times in the distribution. But, far enough

the subcritical Hopf bifurcation; then orbits spiral outwards from the Hopf bifurcation, the statistical trace of these oscil-
from the unstable focus in a dense coil. As the noise introtations is washed out by the binning in the histogram.

duces some uncertainty in the place where the orbit is rein-
jected, the number of twists that the orbit makes before the
dropout is not always the same. Each characteristic time
(each peak in the histogramorresponds to a defined num-
ber of twists around the unstable focus. In the last few years, the semiconductor laser with feed-
It is crucial to note that without added noise we would back has illustrated one of the fundamental problems in non-
return to a single-peaked histogram since we would have hnear dynamics: how to refute or build confidence in a
fixed number of twists and a constant period. When we add enodel for an experiment displaying complex dynamical be-
minute amount of noise we begin to observe different spothiavior. This system presents, for a region of its parameter

V. CONCLUSIONS
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0.07 - . - . - - . . - with hypothesis in Ref[1], was able to give satisfactory
results. Elsewhere, we will report the changes that this dis-
tribution undergoes as parameters are changed, and how it
compares with the changes that are observed in the experi-
ments when feedback and injection current are varidd.

The explanation of the fine structure of the time distribu-
tion of the pulsegto account for the structure present at the
round trip time scalerequired us to extend the model to a
three-dimensional one. The model could also reproduce the
bimodal structure of the interspike time histograms at the
scale of the dropout events.

Finally, let us stress that we do not mean to replace any
set of equations derived from first principles, but to highlight
the topological elements that are needed dynamically to re-
35 40 45 50 produce the reported statistical observables. We found that

the bimodal structure of the interspike histograms can be

FIG. 10. Probability distribution of time between dropout events€xplained in terms of an invariant manifolgeparatrix that
for the noise-driven three-dimensional excitable model described bgplits the flow. Part of it revisits the attract@ssumed in any
Egs. (3)—(9) for parameter valuesa=0.3, b=1.0, c=1.2, d excitable scenarjdfor long times before being expelled, and
=0.75, €=0.2, 6=5.0, y=1.0, u=-0.05, and noise leveD part of it rapidly escapes along the unstable manifold of the
=103, separatrix. This behavior can be found in both models pre-

_ . .. sented in this paper. To account for the grid observed in the
space, a regime called low frequency fluctuations. Two dif-

_ S . 7Y = time returns at the scales of the round trip, we needed the
ferent scenarios were proposed to epra.un th!s regime: NoISGecyrrence of a subcritical Hopf bifurcation near a saddle
driven excitability(at least when the regime first arisesd

high-dimensional chaos(eventually contaminated with point. The folding in the stable manifold of the saddle is a

4 : ; o : reminder of that bifurcation.
noise. In this paper, we identified as a key observational
guantity the interspike time distribution of dropouts, and in-
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spected simple noise-driven excitable models. ACKNOWLEDGMENTS
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