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Semiconductor laser with optical feedback: From excitable to deterministic
low-frequency fluctuations

Manuel C. Eguia and G. B. Mindlin
Departamento de Fı´sica, FCEN, UBA, Ciudad Universitaria, Pab. I (1428), Buenos Aires, Argentina

~Received 12 October 1998; revised manuscript received 22 March 1999!

Semiconductor lasers with optical feedback present a regime in which power dropouts are observed. Al-
though this regime has been extensively studied, there is no agreement about whether the dropouts are deter-
ministically or stochastically generated. In this paper we will study the statistics of time intervals between
dropouts assuming noise-driven simple excitable models. We explain the appearance of characteristic times in
the first return maps.@S1063-651X~99!00408-0#

PACS number~s!: 05.45.2a, 05.90.1m, 42.55.Px
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I. INTRODUCTION

Semiconductor lasers with optical feedback display a r
variety of behaviors that are interesting both from la
theory and from a nonlinear dynamics point of view.
widely studied but not yet fully understood phenomenon
the so-called low-frequency fluctuation~LFF! regime, which
occurs for moderate to strong feedback levels. In this regi
the laser output intensity suddenly drops to almost zero
then gradually recovers to its original value. These drop
events occur at irregular time intervals and become m
frequent as the pump rate is increased.

Because both size and shape are quite similar from
pulse to another, the time interval between them is a m
interesting observable. Statistical analysis of these time s
ings has been performed@1–4#. Specifically, histograms an
first return maps present a remarkable feature: when
dropouts are very rare the return map shows a cloud of po
and the histogram is a single peak with an exponential
but, for higher currents values, certain characteristic tim
arise@1,2#.

There are several approaches to understanding this be
ior. Most of them developed from the Lang-Kobayashi eq
tions, which explains the LFF as a form of high-dimension
chaos@5,6#. Recently, a different approach to the proble
was proposed by Giudiciet al. @1# based on experimenta
observations. According to this interpretation, the laser
haves as an excitable system and the noise plays a dom
role in the appearance of the LFF.

The confrontation between these two paradigms hi
lights a central problem in nonlinear dynamics. Once o
acknowledges that deterministic rules are able to prov
complex dynamical behavior, how can we recognize whet
a dynamically complex system is purely deterministic? T
construction of refutable quantities is by no means trivial@7#.

In this paper, we investigate the behavior of differe
noise-driven excitable systems, and analyze the inters
time distribution that each model predicts. We compare
behavior of these observables as parameters are change
compare them with the experimental data reported in R
@1,2#.

The definition of an excitable behavior is not unifor
throughout the literature. Here we assume that a syste
PRE 601063-651X/99/60~2!/1551~7!/$15.00
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excitable when it displays the following features:~a! it has a
stable equilibrium state,~b! if the system is perturbed from
its equilibrium state beyond a certain threshold, it relax
after a long excursion in phase space, and~c! the size of this
wide relaxation becomes independent of the size of the
turbation provided the latter exceeds the threshold value
the case of the LFF regime, wide relaxations correspond
dropout events. In this paper, we will analyze two simp
noise-driven excitable dynamical models. The first one i
two-dimensional system in which the threshold is given
the distance~in phase space!, between a stable point and
saddle point. We chose to begin our study with this mo
for historical reasons, following the dynamical scenario p
posed in Ref.@1#. Later, we will move on to build a three
dimensional model in which the distance between the att
tor and an unstable periodic solution acts as a threshold

For both models, dropouts will be obtained as noise p
turbs the equilibrium states. We will show that, as long as
are interested in the longer time scales of the system~typi-
cally, the time between dropouts!, the two-dimensional
model is enough to reproduce the statistics observed in
experiments. However, the interspike histograms can disp
some structure in the shorter time scales~multipeaked distri-
bution!, as the injection current is raised. In order to expla
this feature, we need to extend our dynamical model o
more dimension. We will be careful to check that the thre
dimensional model also reproduces the statistical featu
observed in the two-dimensional one.

This paper is organized as follows. First, in Sec. II, w
describe a simple model for an excitable system~following
@1#, a system close to an Andronov bifurcation!, and study its
interspike time distribution once noise is added. In Secs.
and IV, we address the issue of multipeaked histograms.
progressively build a three-dimensional excitable model t
allows for the shorter time scales of the system and rep
duces the interspike histograms and first return maps
ported in the literature. The relationship between these
models is discussed in the last section, where we include
conclusions.

II. TWO-DIMENSIONAL EXCITABLE MODEL

Several groups have reported extensive experime
studies of interspike time distributions for semiconductor
1551 © 1999 The American Physical Society
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1552 PRE 60MANUEL C. EGUIA AND G. B. MINDLIN
sers with feedback in the LFF regime~see@1,2# and refer-
ences therein!. In @2#, a comparison between the predictio
of a model~derived from the Lang-Kobayashi equations@8#!
and experimental results is performed. The experimenta
terspike distributions display, in a parameter range wh
LFF is observed, a bimodal structure. This is the first is
that we will address.

We are interested in whether this statistical behavior
be reproduced within the framework of the hypothesis
Ref. @1#, i.e., a noise-driven excitable system close to
Andronov bifurcation. This bifurcation is locally a saddl
node one in which the unstable manifold of the saddleis the
stable manifold of the node~see region II of Fig. 1!. After the
bifurcation, a stable limit cycle remains as a successor of
previous heteroclinic connection~region III of Fig. 1!. A
third fixed point is needed~unstable focus! to feed the saddle
point and the stable limit cycle before and after the A
dronov bifurcation, respectively.

The equations we are studying are@9#

x85y, ~1!

y85x2y2x31xy1e11e2x2, ~2!

with (x,y)PR2, ande1 , e2PR1. A partial bifurcation dia-
gram for this system is displayed in Fig. 1.

Within the excitable regime~region II of Fig. 1!, an initial
condition close to the node, subject to the action of no
may cross the stable manifold of the saddle to relax afte
long excursion in phase space. We associate this pulse w
dropout event of the laser intensity. In order to obtain ex
able pulses in our model, we added a Gaussian white n
term in Eq.~1! with zero mean and variance 2D51023.

The rate of escape from the node is ruled only by lo
properties, and can be described in terms of Kramers’
mula @10#. The theory also predicts a wide peak in the pro
ability distribution, with a fast rise for short times and a

FIG. 1. Partial bifurcation diagram and phase portraits for
system described by Eqs.~1! and ~2!. In regions I and II there are
three fixed points: a node, a saddle, and a repulsor. Crossing
separatrix to region III, the saddle and the attractor collapse~An-
dronov bifurcation!. The two lower regions display qualitativel
different behavior. In region I the unstable manifold of the sad
approaches a limit cycle. In region II the unstable manifold of
saddle is the stable manifold of the node and the system behav
an excitable one.
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exponential tail for the longer ones. The most probable
cape time can be viewed as a first characteristic time of
system.

Usually, for excitable systems it is assumed that spi
are only triggered from a quiescent state. However, in
model it is possible to have an early-triggered spike if
trajectory crosses the stable manifold of the saddle at s
point before reaching the node. In such a case the inters
time equals the time of flight of a trajectory following th
unstable manifold of the saddle. This second character
time superimposes another peak in the histogram.

Figure 2 shows a typical two-peaked histogram obtain
from numerical simulations of the system~1! and ~2! with
parameter valuese150.26 ande250.45. The leftmost peak
is related to the early-triggered spikes and its importa
decreases as we move far from the global bifurcation t
limits regions I and II in Fig. 1~for sufficiently high values
of e2 we recover the single-peaked distribution predicted
the usual escape rate theory!. The rightmost peak corre
sponds to escapes from the node and has an exponentia
The analysis of how interspike time distributions a
changed as we move the parameter values will be repo
elsewhere@11#.

Then the excitability scenario is, in one of its simple
incarnations, highly compatible with the existence of tw
characteristic times in the interspike time distribution. Fro
a geometrical point of view, the appearance of the tw
peaked distribution is related to the existence of an invar
manifold that splits the flow. Specifically, in this model th
stable manifold of the saddle acts as a separatrix between
early-triggered spikes and the spikes triggered from a qu
cent state.

III. THREE-DIMENSIONAL EXCITABLE MODEL

In the same paper in which Giudici and co-workers p
posed the excitability scenario, histograms and return m
of the time intervals between successive pulses were
played. When dropouts are very rare the return map show
cloud of points and the histogram is a single peak with
exponential tail but, for higher current values, certain ch

e

he

e

as

FIG. 2. Probability distribution of time between dropout even
in the model described by Eqs.~1! and ~2! for parameter values
e150.26 ande250.45 and with Gaussian noise added in thex
variable with zero mean and variance 2D51023.
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acteristic times arise, leading to a multipeaked histogram
a symmetric grid in the return map. From the experimen
observations reported in Ref.@1# it is clear also that the time
between the spots in the grid can be associated to a ch
teristic time of the experimental system: the external cav
round trip. Recently,@12# a high-resolution inspection of th
dynamical evolution of the laser intensity was reported. T
recovery after a dropout presents fast intensity pseudop
odic pulses at the round-trip time of the external cavi
Thus, in order to reproduce the detailed statistics, we m
make allowance for this fast-pulsing phenomenon.

In this section, we want to extend our dynamical pictu
to reproduce the appearance of a grid structure in the re
map of the interspike times within the framework of exc
ability plus noise. Since we have to account for a charac
istic time, which appears to be associated with fast puls
oscillations, we have to move beyond our two-dimensio
model. We present the derivation of an excitable system
three dimensions. This model also simulates the typ
shape of averaged pulses in the LFF regime.

We first analyze the main features of the dynamical
havior of the laser intensity. Typical time series for this va
able in the LFF regime was presented in@1,3,4#. In order to
clarify this behavior, we split the temporal variations of t
laser intensity into three parts:~a! a slow recovery of the
signal up to an almost constant value~buildup!, ~b! a variable
period of time during which the intensity is nearly stationa
in that value, and~c! the dropout process in which the sign
drops in a short period of time. In a dynamical reconstruc
system the buildup can be associated with an orbit appro
ing a fixed point. This orbit stays in a neighborhood of t
fixed point due to a certain trapping process@part ~b!#, and
then rapidly escapes from this region@part ~c!# and is rein-
jected again through the buildup process. One can also
an oscillatory behavior near the fixed point, which sugge
its rotational nature. These will be the building blocks of o
dynamical sketch.

One feature that is clearly displayed in the LFF series
the alternation between fast and slow dynamics. This is v
common to a wide variety of systems, from chemical re
tions to electronic devices. The simplest example of a sys
with such an alternation of different time scales is a rel
ation oscillator. Typically, there is a fast variable that relax
to a z-shaped slow manifold, where the upper and low
branches are stable. In these branches the motion is rule
the slow variables and the orbits can eventually reach
turning point of thez shape and jump to the other stab
branch. If we choose a folded two-dimensional slow ma
fold as shown in Fig. 4, we can combine two planar flo
~one at each stable branch of thez shape! with the fast
switching mechanism. This idea was fully developed
Deng @13# to construct homoclinic orbits and chaotic attra
tors in three-dimensional flows. Here we use the simp
z-switching mechanism: a singular perturbation of a tra
verse crossing of two planes atz561 and a diagonal plane
at z5x1d. The set of equations reads

x85~11z! f 1~x,y!1~12z!g1~x,y!, ~3!

y85~11z! f 2~x,y!1~12z!g2~x,y!, ~4!
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ez85~12z2!~z2x2d!2ez, ~5!

wheree is the singular parameter andd is a fixed parameter
controlling the reinjection of the orbits. Whene is small
enough, the nullclinez850 consists of the roots of a cubi
polynomial inz which has az shaped hysteresis cycle in th
middle, as displayed in Fig. 3.

The first two equations, Eqs.~3! and ~4!, govern the mo-
tion in the stable branches lying near the perturbed pla
z561. For a sufficiently weake value, the motion in the
upper ~lower! stable branch is approximated by the vec
field f(x,y) @g(x,y)#.

In order to map our problem to this dynamical sketch,
relate the dropout and buildup processes to the two st
branches in thez-shaped manifold and take as ourx variable
a properly scaled variable proportional to the laser intens
Then, as illustrated in Fig. 4, we have the following tempo

FIG. 3. Dynamical sketch based on Eqs.~3!–~5!. Construction
of a z switch; the thick line is the nullcline of Eq.~5! and the arrows
indicate the fast relaxation of thez variable.

FIG. 4. Combination of thez switch ~3!–~5! and the slow sub-
systems@on the upper stable branch the linear flow governed
Eqs. ~6! and ~7! and on the lower stable branch the planar syst
~8! and ~9!#. For a suitable parameter choice the whole syst
behaves as an excitable one: if we perturb an initial condition iP
by an amount greater than the distance to the saddleS, the orbit
relaxes after a long excursion in phase space following the het
clinic connectionR.
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behavior~a! In the upper plane there is a slow recovery
the x variable until the orbit reaches the turning point on t
slow manifold (x512d). ~b! The orbit falls in a vicinity of
the fixed point and spends a variable amount of time be
crossing towards thex negative direction.~c! The x variable
rapidly drops until the orbit reaches the turning point ax
5212d and then turns back to the upper plane. Thus
have recovered our initial analysis for the temporal evolut
of the laser intensity in terms of the system described by E
~3!–~5!. Now, we need an explicit form forf(x,y) and
g(x,y) in order to simulate our caricature of the LFF proce

We choose the simpler form for the buildup of a variab
a linear flow converging to a stable node at (x,y)5(b,0).

f 1~x,y!52a~x2b!, ~6!

f 2~x,y!52cy. ~7!

If we set b.12d, the fixed point is located beyond th
turning point of thez switch. Thus, for a sufficiently smal
value of e, every trajectory near the half plane@x,(1
2d),z51# moves towards the positivex direction until it
reaches the edge of thez switch.

Deciding which is the better form for the planar flow
the lower branch@g(x,y)# is not a simple task. Here on
must decide if the dropout process is a deterministic o
noise-driven one. There is no clear evidence of which bif
cations occur with the appearance of the LFF and with
qualitative change in the return map.

In the excitability scenario we only need one saddle po
and one stable focus~located at a higher value ofx) in the
lower stable branch of our dynamical sketch, as shown
Fig. 4. Actually, with these two elements the requireme
for the excitable system specified in the Introduction are
isfied ~a! A stable equilibrium point exists~the focusP). ~b!
If we perturb~in thex variable! an orbit near the equilibrium
point by an amount greater than the distance between
fixed points, this orbit may cross the stable manifold of t
saddle (S), escape towards the turning point of the low
branch of thez switch, and return to the equilibrium sta
after a long excursion in phase space.~c! Further, as the grea
relaxation is originated by thez-switch mechanism it be
comes independent of the size of the perturbation in the s
variable.

The experimental observations reported show that the
of dropout events increases as the control parameter is ra
until the oscillations becomes almost periodic. In our s
nario this can be achieved going from an excitable regim
relaxation oscillations in the hysteresis cycle. This transit
can be made through two different local bifurcations of t
planar flowg~x,y!: a saddle-node bifurcation~the stable fo-
cus becomes a node before his collapse with the saddl
discussed in the previous section! and a subcritical Hopf bi-
furcation ~the focus loses its stability!. In both cases the or
bits lying on the lower stable branch are ejected towards
turning point after the bifurcation.

Actually, both bifurcations are global, due to the hete
clinic connection~R in Fig. 4!. In the saddle-node case, aft
the merging of the fixed points, a limit cycle remains and
recover the Andronov bifurcation.
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If we choose the subcritical Hopf bifurcation instead, t
main features of the statistics of time intervals studied in
preceding section are retained but, as we will show in
next section, our dynamical sketch predicts also the grid
the return map. We first present a simple planar flow t
undergoes a subcritical Hopf bifurcation and then justify t
particular choice.

x85y, ~8!

y85x1my2dx22gxy. ~9!

Here,g andd are fixed real positive values@d controls the
distance between the two fixed points, (x,y)5(0,0) and
(x,y)5(1/d,0)]. Our control parameter will bem, which
varies over all real values.

Let us analyze the bifurcation points in our linear para
eter space (m). As we require, the fixed point at the origin
always a saddle while the other fixed point loses its stabi
at m5g/d. At this parameter value we find, after a suitab
coordinate change, a Hopf bifurcation with a positive lead
term. This means that there is some interval in param
space~whose upper limit isg/d) where an unstable limit
cycle encircles the stable focus. This cycle collapses at
bifurcation with the fixed point and whenm.g/d, an un-
stable focus remains.

As one can check numerically, the two fixed points a
the unstable limit cycle are the only limit sets of the plan
system~8! and~9!. Then we have at least three topologica
inequivalent flows. These are shown in Fig. 5.

For low values ofm we have no limit cycle and one
branch of the unstable manifold of the saddle feeds the st
focus ~region I!. In the three-dimensional model~3!–~5! as-
sociated with this flow, every orbit reinjected is captured
the focus. Only the noise can drive the orbit towards nega
x values, so we are in an excitable regime. Note that in
case the stable manifold of the saddle represents the e
ability threshold. Region II instead has an unstable lim
cycle, which is connected with the stable manifold of t
saddle. Within this region, the behavior of the thre
dimensional system is also excitable, but now the limit cy
acts as the threshold. As we will see later, the branch of
unstable manifold of the saddle lying in thex.0 half-plane
embraces the unstable cycle, thus hindering the pertur
orbits and driving them towards the turning point of thez
switch. This is a very interesting point because we are ne
subcritical Hopf but there is no bistability~we do not need a
stable limit cycle!. Finally, after the Hopf we enter region II
where the unstable focus ejects all reinjected orbits and
obtain sustained oscillations in the three-dimensional syst

It remains a last bifurcation point separating regions I a
II. Since we have studied all local bifurcations, this must
a global one. Regarding the topologically inequivalent ph
portraits associated with each region, it appears that
stable and unstable manifolds of the saddle point must c
at some parameter value. When this happens, we obta
saddle loop; a homoclinic connection encloses the stable
cus. Furthermore, as we cross the global bifurcation po
from region II to region I, the unstable limit cycle grows i
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size and period until it reaches the saddle connection~which
has infinite period!. This also explains why the unstab
manifold of the saddle embraces the limit cycle in region

One can explicitly calculate the approximate parame
value at which the global bifurcation takes place by mean

FIG. 6. Time evolution of thex variable in the three-
dimensional system with the following parameter values:a50.3,
b50.1, c51.2, d50.6, e50.1, d520, g51, m50.0, and noise
level D51024 corresponding to an excitable regime.

FIG. 5. Bifurcation diagram and phase portraits for the pla
system described by Eqs.~8! and ~9!. For m,(6/7)(g/d) one
branch of the unstable manifold of the saddle feeds the stable f
~region I!. As m is increased the branches of the stable and unst
manifolds lying on thex.0 half-plane approach each other until
saddle loop is formed. In region II an unstable limit cycle is bo
and it encloses the stable focus. Whenm5g/d a subcritical Hopf
bifurcation occurs. In region III the focus is unstable and the sta
manifold of the saddle twists around it.
.
r
f

the Melnikov function. In fact, it is possible to rewrite Eq
~8! and ~9! as a time-independent perturbation of a Ham
tonian problem. When the Melnikov function~written as a
function of the parameters! vanishes, we would have a ho
moclinic connection@14#. Hence, we obtain the valuem
5(6/7)(g/d). This is in good agreement with the real valu
at which the global bifurcation occurs.

Now we return to our three-dimensional sketch. It can
checked that for a small enoughe the equilibrium points and
the main features of the planar system described above
sist in a neighborhood of the lower branch of thez-shaped
slow manifold. Indeed, inserting Eqs.~6!–~9! into Eqs.~3!–
~5! we can derive analytical expressions for the nullclin
and graphically demonstrate the persistence of the fi
points.

IV. RESULTS

We simulated the system ruled by Eqs.~3!–~9! adding
Gaussian white noise in thex variable with zero mean and
variance 2D. The parameter values are the following:a
50.3, b50.3, c51.2, d50.6, e50.1, d520, g51, and
D51024, and were chosen to fit the functional form of th
experimental dropouts. In Fig. 6 we present the time evo

FIG. 7. Statistics on the time between dropout events for
excitable regime (m50.04). ~a! Histogram in log scale.~b! First
return maps.
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1556 PRE 60MANUEL C. EGUIA AND G. B. MINDLIN
tion of thex variable in the excitable region (m50).
Next, we performed a statistical analysis of the time b

tween dropouts, taking up to 106 events. As expected, in th
excitable regime~regions I and II! we obtain a peaked his
togram and a fuzzy return map~see Fig. 7!. For a wide range
of parameter values within region III~relaxation oscillations!
we have obtained a histogram and a return map with w
defined characteristic times. This is displayed in Fig. 8
m50.1.

The easiest way to understand the appearance of t
characteristic times is to look carefully what happens n
the fixed point~an unstable focus!. In Fig. 9 we show a close
view of the vicinity of the focus form50.1. It is little after
the subcritical Hopf bifurcation; then orbits spiral outwar
from the unstable focus in a dense coil. As the noise in
duces some uncertainty in the place where the orbit is r
jected, the number of twists that the orbit makes before
dropout is not always the same. Each characteristic t
~each peak in the histogram! corresponds to a defined num
ber of twists around the unstable focus.

It is crucial to note that without added noise we wou
return to a single-peaked histogram since we would hav
fixed number of twists and a constant period. When we ad
minute amount of noise we begin to observe different sp

FIG. 8. Statistics on the time interval between dropout eve
after the Hopf bifurcation (m50.1). ~a! Multipeaked histogram.~b!
First return map showing a grid.
-

l-
r

se
r

-
n-
e
e

a
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ts

in the return map, as the orbits can make a few more or a
less twists before the dropout. The fact that the spot dis
bution is symmetric and that there are no other structu
aside from the characteristic times is a clear indication t
noise is still playing a non-negligible role in the time stat
tics. We are only viewing the old fuzzy spot through a gr
of privileged times.

Then we claim that the statistical properties of the tim
between pulses in the LFF regime can be explained as n
~or a form of high-dimensional chaos! acting on a very
simple deterministic structure, which is excitable in som
parameter region. The bifurcation which limits this excitab
region, can be a saddle-node one~an Andronov bifurcation,
globally speaking! if we are only interested in the longe
times scales, but a subcritical Hopf as we want to reprod
the detailed structure of the interspike histograms.

Finally, we want to point out that the model analyzed
this section does indeed allow us to reproduce also the bi
dal structure of the interspike histograms observed in
analysis of the two-dimensional toy model discussed in S
II. In Fig. 10 we display a histogram displaying this featu
for the parameter values in the caption. Notice that in t
case, in the approximation for the planar flow in the low
plane, we are in parameter region I of Fig. 5. Thus, the
variant manifold that splits the flow into the ones associa
with the fast and slow pulses, is the stable manifold of
saddle~a bidimensional manifold in our three-dimension
system!. In this parameter region we still have rapid oscill
tions around the stable focus and, consequently, a collec
of characteristic times in the distribution. But, far enou
from the Hopf bifurcation, the statistical trace of these osc
lations is washed out by the binning in the histogram.

V. CONCLUSIONS

In the last few years, the semiconductor laser with fe
back has illustrated one of the fundamental problems in n
linear dynamics: how to refute or build confidence in
model for an experiment displaying complex dynamical b
havior. This system presents, for a region of its parame

ts

FIG. 9. Detail of the flow near the unstable focus when t
characteristic times arise. An uncertainty in the point where
orbit is reinjected leads to an uncertainty in the number of tw
around the fixed point.
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space, a regime called low frequency fluctuations. Two
ferent scenarios were proposed to explain this regime: no
driven excitability~at least when the regime first arises! and
high-dimensional chaos~eventually contaminated with
noise!. In this paper, we identified as a key observatio
quantity the interspike time distribution of dropouts, and
spected simple noise-driven excitable models.

In order to explain the distribution of pulses at the tim
scale of the dropout events~bimodal distributions!, a simple
two-dimensional noise-driven excitable model, consist

FIG. 10. Probability distribution of time between dropout eve
for the noise-driven three-dimensional excitable model describe
Eqs. ~3!–~9! for parameter valuesa50.3, b51.0, c51.2, d
50.75, e50.2, d55.0, g51.0, m520.05, and noise levelD
51023.
J.

.

.

d

-
e-

l
-

t

with hypothesis in Ref.@1#, was able to give satisfactor
results. Elsewhere, we will report the changes that this
tribution undergoes as parameters are changed, and ho
compares with the changes that are observed in the ex
ments when feedback and injection current are varied@11#.

The explanation of the fine structure of the time distrib
tion of the pulses~to account for the structure present at t
round trip time scale! required us to extend the model to
three-dimensional one. The model could also reproduce
bimodal structure of the interspike time histograms at
scale of the dropout events.

Finally, let us stress that we do not mean to replace
set of equations derived from first principles, but to highlig
the topological elements that are needed dynamically to
produce the reported statistical observables. We found
the bimodal structure of the interspike histograms can
explained in terms of an invariant manifold~separatrix! that
splits the flow. Part of it revisits the attractor~assumed in any
excitable scenario! for long times before being expelled, an
part of it rapidly escapes along the unstable manifold of
separatrix. This behavior can be found in both models p
sented in this paper. To account for the grid observed in
time returns at the scales of the round trip, we needed
occurrence of a subcritical Hopf bifurcation near a sad
point. The folding in the stable manifold of the saddle is
reminder of that bifurcation.
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