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Nonlinear aspects of analysis and synthesis of speech time series data
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In this work we study a simple model of voiced sound production. We analyze contributions that the
qualitative theory of dynamical systems can make to the analysis and synthesis of human speech.
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I. INTRODUCTION

Speech data constitute an amazing test bench for no
ear dynamics. From developed turbulence to relaxation
cillations, every classical problem studied in nonlinear d
namics plays a role in the production of human voic
Therefore, time series data from speech present impor
challenges for the time series analyst. For example, s
oscillations might be established in the vocal folds as par
eters are changed, which dynamically enrich their spec
properties, with simultaneous changes in the fundame
frequency. Since our observations are mediated by filters
time series can present features resembling bifurcations
even chaotic behavior@1#. Since realistic models of the fold
can indeed present bifurcations of the self-oscillations, i
important to know what to expect from the simplest mod
of voice production.

The term voice refers only to the sounds produced
vocal fold oscillations. In fact, a first order classification
the sounds used in human speech can be made in term
whether the vocal folds oscillate or not, i.e., voiced or u
voiced sounds. Vowels are a typical example of voic
sounds@2#, and in this work we will analyze dynamical as
pects of their production.

The spectral content of voiced sounds is fairly simp
displaying a discrete number of peaks~harmonics of the fun-
damental frequency of oscillation of the vocal folds!, modu-
lated by a smooth function. The classical theory accoun
for this observation is known as the source filter theory@2#.
In this framework, the time varying flow through the glott
is filtered by the vocal tract. Therefore, some of the harm
ics of the fundamental frequency are enhanced and other
reduced, producing a rich variety of sounds. The frequen
enhanced by the vocal tract are known as formants, an
the case of the vowels the ratio between the first two de
mines them.

The study of voiced sounds includes the acoustic asp
of a very complex tract and the dynamics involved in t
oscillations of the vocal folds. Moreover, the dynamics c
become extremely rich as soon as we integrate into the s
the effects of the coupling between the sound source and
filter @3#. In this work, we review, from the dynamical sys
tems perspective, one of the simplest models of vocal f
oscillation @4#. We analyze the bifurcation structure of i
solutions as parameters are changed. Finally, we show h
combined analysis of the bifurcating solutions, enrichi
their spectral content, and a proper scaling allows us to
~and therefore synthesize! speech data.
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The work is organized as follows. In the second sect
we review some important models accounting for vocal fo
oscillations. In the third section we study the simplest
these models in detail, discussing its range of validity and
structure of its solutions. The fourth section is dedicated t
simple model for the vocal tract filter. The fifth sectio
shows how to use these simple elements to synthesize hu
speech data, and a genetic algorithm is used to properl
the model parameters. The last section discusses future w
applications, and conclusions.

II. MODELS

The construction of models of vocal folds has a long a
rich history. Basically, the vocal folds are the source
voiced sounds. A flow induced instability of these oppos
ligaments modulates the airflow, giving rise to a sequence
pulses that excites the vocal tract. A seminal work within t
area was done by Ishizaka and Flanagan@5#. Interested in the
problem of achieving a realistic synthesis of voiced soun
they built a very successful model of two stiffness-coup
masses, which is used almost 30 years after its publica
@6#. Although the authors of this model also mention t
importance of understanding the critical parameters of
mechanism in order to address the diagnosis of voice di
ders, it has been pointed out that the key parameters in
model have been difficult to relate to anatomical features@4#.
Keeping the simplicity of the two mass model, Story a
Titze introduced a three mass model that allows a better c
nection between physiological and model parameters@7#.
This model builds upon the work of Hirano@8#, who stressed
the importance of understanding the vocal fold structure
order to properly explain the onset of vocal fold oscillation
The models in@5# and@7# represent an adequate comprom
between very simplified one mass models~in which the vo-
cal folds are modeled by one mass spring driven by airfl
with an inertial coupling to the vocal tract@4#! and models
that include several masses~as in @9,10#!.

In this section we review in a qualitative way two simp
models for vocal fold oscillations@4#. The motivation behind
these models is the convenience of framing the basic me
nisms in simple mathematical terms and working out thre
old conditions for the onset of oscillations in terms of para
eters that could easily be compared with experimental on
Both of them are based on the principle that vocal fold
cillation is induced by glottal airstream flow, and are co
ceived to account for the onset of the oscillations that bu
up from spread apart vocal folds, with no glottal closure. W
©2001 The American Physical Society16-1
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can think of the vocal folds as elastic masses that are pu
together by the~negative! pressure of the intraglottal air
stream, but it is important to note that in order to create
oscillatory instability the driving force has to change in a
ternate quarter cycles. In this way, mechanical energy ca
transferred to the vocal folds.

The simplest possible model reflecting this mechanism
known as the one mass model@4#. Each vocal fold is as-
sumed to be equivalent to a mass, subjected to an el
restitution force, a dissipative force, and the force due to
intraglottal pressure~see Fig. 1!. In this model, it is possible
to show that the intraglottal pressure is equal to the pres
at the entrance of the vocal tract. Therefore, in order to h
oscillatory instabilities from the equilibrium position of th
vocal folds, we need a positive pressure~larger than atmo-
spheric! when the folds are spreading apart, and a nega
pressure~smaller than atmospheric! when the folds are ap
proaching each other. This model will be a good approxim
tion as long as the air, for the range of frequencies involv
is mainly inert. As the vocal folds open, the flow rises a
the air column gets accelerated. This implies a positive in
pressure for the vocal tract, and therefore a positive intrag
tal pressure, which further opens the folds. This model w
be reviewed in detail in the following section, but one po
has to be stressed: a one mass model is not capable o
playing self-oscillations without vocal tract loading.

The simplest way to achieve self-oscillations in the a
sence of coupling is by assuming a nonuniform tissue st
ture @4#. The idea is that the shape of the glottis can cha
over a cycle, giving rise to different pressure profiles. T
can lead to the asymmetry that we need to transfer mech
cal energy to the folds. In Fig. 2, we display such a scena
If the glottis is convergent~diverging! when it is opening
~closing!, the average intraglottal pressure will be positi
~negative!, and therefore the motion will be enhanced. Th
model constitutes a simplified version of the two mass mo
@5#, an interesting one displaying quite complex behavior
a wide region of its parameter space.

In this work, we will concentrate on the simplest mod
and show that its nonlinear self-oscillations~created in Hopf

FIG. 1. The elements of the one mass model.
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bifurcations! can lead, once properly filtered, to realistic ou
puts.

III. THE ONE MASS MODEL

As stated in the previous section, this model assumes
the vocal folds move symmetrically, and each fold can
thought of as a mass subjected to a restitution force, a d
pative force, and the driving force due to the intraglot
pressure. Therefore, its dynamics will be given~in terms of
its displacementx) by

Mx91Bx81Kx5Pg , ~3.1!

whereM, B, andK represent the mass, the dissipation co
stant, and the restitution constant, all per unit area. The v
ablePg stands for the intraglottal pressure.

For the general case in which the entry glottal area (a1)
and exit glottal area (a2) are different, it has been shown th
the relationship between the transglottal pressure and the
traglottal pressure is given by

Pg5Pi1~Ps2Pi !~12a2 /a12ke!/kt , ~3.2!

wherePi is the input pressure at the vocal tract@4# and Ps
the subglottal pressure. The coefficientsKe andKt are phe-
nomenological quantities accounting for the differences
tween the relationships between pressure and velocity
pected for steady flows, and are known as the press
recovery coefficient, and transglottal pressure coefficient,
spectively@11#. Sincea15a2 in our case, andKe'0 when-
evera2 is much smaller than the vocal tract areaSt , we get
Pi5Pg .

The last element that is needed in order to solve our
namical equation forx is a relationship between the drivin
pressure and the intraglottal variables. Rothenberg@12#
showed that, whenever the fundamental frequency is sma
than the first resonance~formant! of the vocal tract, its input
impedance is mainly inertial@12#, allowing us to write

Pi5R2U1I 2U8, ~3.3!

FIG. 2. The nonuniform tissue model: a convergent glo
~right! and a divergent glottis~left!.
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where the coefficientsR2 and I 2 are the resistance and th
inertial constant andU stands for the flow. In order to pro
ceed to form a closed dynamical system, we relate the l
pressurePL and the input pressure by

PL2~R2U1I 2U8!5ktrv2, ~3.4!

wherev stands for the velocity of the air at the glottis, i.e
v5U/a. Notice that the glottal areaa can be written in terms
of the vocal fold lengthL and the equilibrium position of the
fold x0 asa52L(x1x0).

Now it is possible to write the equation as a system
three equations of first order: definingF as

F5PL2r/2v222L@R2~x01x!1I 2y#v/@2L~x01x!I 2#,
~3.5!

it reads

x85y, ~3.6!

y851/M @2LR2x0v12LI 2x0F

2~B22LI 2v !y2~K22LR2v22LI 2F !x#, ~3.7!

v85F. ~3.8!

Notice that this system of equations was derived under
assumption that the vocal folds do not close~as is implied,
for example, in the relationship betweenPL andPs through
a phenomenologically corrected version of Bernoulli’s the
rem!. Therefore, it is expected to help us understand the
tem’s behavior only forx.2x0.

We are going to study the solutions of this system a
their qualitative changes as parameters are varied@13#. The
pressure at the lungs and the restitution constantK are a
sensible set of parameters to explore, since they are typic
controlled by a normal speaker.

The fixed points are easy to find. They will all be locat
at yf50, and will satisfy

PL2r/2v f
222L@R2~x01xf !#zf50, ~3.9!

2LR2x0vxf2~K22LR2v f !xf50. ~3.10!

In general there will be up to three solutions of this syste
yet, only two in the domain of interest (x.2x0), one of
them at a positivev f5v1 value, and the other at a negativ
v f5v2 value. The regions in parameter space with qual
tively different fixed point local stability are displayed i
Fig. 3. Although we are interested in the behavior of t
fixed point atv1.0, we will describe the whole flow.

We begin the description of the dynamical responses
the system with region I, which is the most relevant one
terms of voice production. In this region, the fixed point
v1.0 is a saddle focus. It has a stable direction~approxi-
mately parallel to thev axis!, and a two dimensional un
stable manifold~associated with complex conjugate eige
values! that feeds an attractive limit cycle. The coexistin
fixed point at v2,0 is a saddle. Locally, it has a stab
manifold approximately parallel to thex axis, and two un-
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stable directions~approximately parallel to they andv axes!.
A two dimensional manifold, tangent at the fixed pointv2 to
its stable manifold and to the first unstable direction d
scribed above, separates the phase space between the
of attraction of the limit cycle and the points that tend
infinity. This two dimensional manifold approaches the s
gular plane atx52E0 at the one dimensional curve i
which the numerator ofF is equal to zero. In Fig. 4 we show
a two dimensional projection of the flow on thex,v axes. A
piece of the boundary basin is displayed together with
trajectory of an initial condition right above it, approachin
the attracting limit cycle. In Fig. 5 we display the time ev
lution of Pi5PL21/2rv2. The line in parameter space sep
rating regions I and II indicates the Hopf bifurcation
which the limit cycle is created fromv1.0. In other words,
in region II, the fixed point atv1.0 is an attractor.

For completeness, we describe the evolution of the fl
as parameters are changed, even when they are referr
changes in the basin of infinity. Toward region III, the fixe

FIG. 3. Bifurcation diagram of the one mass model. With
region I, an attracting limit cycle represents the oscillation of the
vocal folds responsible for the production of voiced sounds.

FIG. 4. A two dimensional projection of the flow on thex,v
axes. A piece of the boundary basin is displayed together with
trajectory of an initial condition right above it, approaching th
attracting limit cycle. The parameters used in this simulation
L50.14, M50.04 g/cm2, k520 000.0 kdyn/cm3, x050.06 cm,
P5840.0 dyn/cm2, r 050.001 14 g/cm3, R253.1 dyn s/cm5, I 2

50.1 dyn s2/cm5, andc535 000 cm/s.
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point atv2,0 has two eigenvalues which become comp
conjugate@with associated eigenvectors almost in a pla
parallel to the plane (x8,z)#. At the separatrix between re
gions II and III, an inverse Hopf bifurcation takes place: t
saddle point atv2,0 emits a saddle limit cycle, gainin
stability.

In summary, the one mass model predicts the appear
of self-sustained oscillations as the flow is increased. D
namically, the oscillation is created in a Hopf bifurcatio
and therefore the solution, as the flow is increased, chan
its frequency and its spectral content as a nonlinear osc
tion is established.

IV. THE VOCAL TRACT

Measuring the pressure fluctuations generated as a vo
sound is produced, we see typically time series that look
the one displayed in Fig. 6@14#. Notice the difference be
tween this time series and the one displayed in Fig. 5.
cording to the source filter theory of voiced sounds, the d
ference is due to the filtering effects that occur in the vo
tract. A series of partial reflections and transmissions hap
in different parts of it, enhancing some frequencies and s
pressing others. The simplest model that one can conceiv
reproduce these time series consists of three tubes, of di

FIG. 5. The time evolution of the input pressure at the vo
tract, for the same parameters used to generate Fig. 4.

FIG. 6. The experimental record of the pressure fluctuation
the mouth as the vowel ‘‘u’’ is pronounced in Spanish.
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ent lengths (Li) and areas (Ai) @2#. The input pressurePi
generates a wave, which is partially reflected and partia
transmitted to the second tube that models the tract at
interface between the first two tubes. The coefficient of
flection at this interface is given byr 1,25(A12A2)/(A1
1A2), and the transmission coefficientt1,2 by t1,251
2r 1,2. Clearly, the transmitted wave is partially reflected
the second interface, and partially reflected toward the th
tube. At the interface between the last tube and the at
sphere, the wave is partially reflected and partially emit
toward the atmosphere. Callinga(t) @bb(t)# the forward
~backward! wave in the first tube,bf(t) @cb(t)# the forward
~backward! wave in the second tube, andcf(t) @db(t)# the
forward ~backward! wave in the third tube, the equation
accounting for the boundary conditions are

a~ t !5Pi~ t !1bb~ t2t1!, ~4.1!

bb~ t !5r 1,2a~ t2t1!1t2,1cb~ t2t2!, ~4.2!

bf~ t !5t1,2a~ t2t1!1r 2,1cb~ t2t2!, ~4.3!

cb~ t !5r 2,3bf~ t2t2!1t3,2db~ t2t3!, ~4.4!

cf~ t !5t2,3bf~ t2t2!1r 3,2db~ t2t3!, ~4.5!

db~ t !5acf~ t2t3!, ~4.6!

wherea accounts for the reflection coefficient of the inte
face between the third tube and the atmosphere~with no
losses,a521), andt i is the time that it takes a sound wav
to travel the lengthLi .

In Fig. 7, we display a time series corresponding tocf(t),
where the input pressure is the one displayed in Fig. 5.
tice that some frequencies have been enhanced from th
of harmonics of the original time series. As in the expe
mental record, the initial values present a simple oscillati
which becomes more complex as the time evolves. The
son is that the time self-fluctuation at the glottis arose a
fixed point lost its stability in a Hopf bifurcation. Therefore
its spectral content is dynamically enriched as the press
increases.

l

at

FIG. 7. A time series corresponding tocf(t), where the input
pressure is the one displayed in Fig. 5.
6-4
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V. FITTING OF THE PARAMETERS

At this point we have the basic building blocks needed
reproduce a realistic voiced sound. A mass subjected to
titution elastic forces, dissipation, and pressure begins to
play self-oscillations as kinetic energy of the air is tran
ferred to mechanical energy of the mass. The oscillation
created in a Hopf bifurcation, and as the control parame
are moved beyond the bifurcation the attracting limit cy
enriches its spectrum due to the influence of the coexis
invariant sets described above. The input pressure then
plays several supraharmonics, which are filtered by the vo
tract as discussed in the previous section. In order to tes
model, we have devised a genetic algorithm which allows
to find the appropriate parameters needed to reprodu
measured signal right at the mouth@15#.

A genetic algorithm is a fitting procedure vaguely inspir
by natural selection. Given a set of parameters for a mo
its success is measured according to how similar the sim
tion with those parameters is to the experimental record.
algorithm consists of a number of iterations~generations!. In
each one, the simulation of the model is performed a la
number of times~population number!, each one for a se
~chromosome! of parameters~genes!. The chromosomes ar
ordered according to their success~the most successful chro
mosome being the set of parameters that better fits the
series!. For the next generation, the better chromosomes
more likely to be chosen again, some chromosomes are
carded, and new chromosomes are generated by a set o
erations over the better chromosomes of the previous gen
tion. These operations include ‘‘crossing over’’ of som
parameters between successful chromosomes and ran
mutation of a given parameter from a successful chrom
some.

In Fig. 8, we display the evolution of the best chrom
some of each generation, measured by thex2 of a segment of
150 points of the experimental record displayed in Fig. 4 a
the simulation, as a function of the generation number. T
simulation of the model with the parameters of the best ch
mosome at the tenth generation is displayed in Fig. 9. In F
10 we display the results of applying this fitting procedure

FIG. 8. The evolution ofx2 for a segment of 150 points of th
experimental record displayed in Fig. 4 for the best chromosom
each generation, as a function of the generation number.
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a different record~this time corresponding to an ‘‘e’’ vowel
pronounced in Spanish!.

In both cases the equations have been rewritten resca
the time. Notice that ift→at the equations ruling the dy
namics of (x,x8,z) are unchanged, provided thatm→a2m,
b→ab, andI→aI . In this way, we can easily generate di
ferent time series for the pressurePi with the same spectra
content, but different fundamental frequency. In our simu
tions, this parameter was part of the chromosome, as we
the lengths and areas of the vocal tract. We have fitted n
malized pressures, but the scaling of the equations allow
to fit the amplitude ofPi ~and therefore of the pressure at th
mouth!. This can be done by scalingz in such a way that the
equations remain unchanged:z→gz, together with L
→L/g, PL→PL /g2, b→b/g2, m→mg2, andk→k/g2.

VI. CONCLUSIONS

In this work, we have analyzed in detail a simple mod
for vocal fold oscillation. The dynamical identification of th
bifurcations taking place allows us to understand the ti

of
FIG. 9. The simulation of the model with the parameters of

best chromosome at the tenth generation. These areA151.5 arb.
units, A251.5 arb. units,A354.5 arb. units,L157.0 cm, L2

56.4 cm,L354.1 cm.

FIG. 10. The results of applying this fitting procedure to a d
ferent record~this time corresponding to an ‘‘e’’ vowel, pronounce
in Spanish.
6-5
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evolution of the spectral content of voiced sounds as they
pronounced. The description of the invariant manifolds
existing with the bifurcating limit cycle describing the se
oscillation of the folds allows us to understand its spec
evolution, as the parameters are changed. Even if this m
is an oversimplification of the rich dynamics that the voc
folds can display, we have shown that an appropriate se
tubes modeling the vocal tract allowed us to adequately
experimental observations.

As the parameters are changed in the simple model s
ied here, self-oscillations are established which dynamic
enrich their spectral properties. These changes are sim
neous with variations in their fundamental frequencies.
saw that the effect of the filters is that the observed ti
series can present complex features. Since realistic mode
the folds can indeed present complex features at the leve
the vocal fold oscillations, and even chaos@16,6#, it is im-
portant to know what to expect from the simplest models
tu

c.

e
2.
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Finally, we claim that a fitting procedure of physical p
rameters~of eventually richer models! can constitute an ad
ditional approach to the problem of speaker verification. T
is an important issue, since the current paradigm for b
speaker identification and verification is based on the an
sis of the statistical properties of the recorded utteran
through LPC analysis, the computation of Cepstrum coe
cients, pattern recognition applied to the Gabor transform
tion of the signal, or other techniques of spectral nature@17#.
On the other hand, an analysis based on the reconstruc
within a model of the parameters that are necessary to re
duce an utterance is able to distinguish the ergonomic
tures of a speaker~such as the typical lengths of his/her voc
tract! from circumstantial parameters~such as the lung pres
sure used!.
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