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Interspike Time Distribution in Noise Driven Excitable Systems

A. M. Yacomotti, M. C. Eguia, J. Aliaga, O. E. Martinez, and G. B. Mindlin
Departamento de Fı́sica, FCEN, UBA, Ciudad Universitaria, Bld. I (1428), Buenos Aires, Argentina

A. Lipsich
CEFIS-Instituto Nacional de Tecnologı́a Industrial, P.O. Box 157 (1650), San Martı́n, Buenos Aires, Argentina

(Received 13 November 1998)

We generate an observable which relates the interspike time statistics in a noise driven excita
system with its phase space global properties. Experimental results from a semiconductor laser w
optical feedback are analyzed within this framework.
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Escape problems from metastable states are ubiquito
in nature [1]. From biology to physics, several situation
are adequately modeled through noise driven equations
which the dynamical output consists of a sequence of sp
responses with a more or less complex interspike time d
tribution [2,3]. In these cases, efforts usually are devot
to the calculation of rate coefficients. Kramers made th
seminal contribution to this program. He computed e
cape rates from both the local properties of the determin
tic part of the model in the neighborhood of the metastab
state and the noise level [4]. In Ref. [5], pseudoregul
oscillations were found in noise driven excitable system
for a specific case: the infinitely dissipative regime. In th
work, we analyze the consequences of the global propert
of a general excitable system (presenting finite dissipatio
in the interspike time distribution of its response to adde
noise. We find that the interspike distributions present
nontrivial structure. The global properties we refer to a
the stable and unstable manifolds of the fixed points
the deterministic part of the model. In particular, we ana
lyze the results of an experiment (a semiconductor las
with optical feedback close to the onset of a regime calle
low frequency fluctuations) [6–8], in terms of a simple
model [9].

The experimental setup is shown in Fig. 1(a). The diod
laser used in our experiment is the single transverse-mo
Sharp LT030MD0 (nominal wavelengthl � 750 nm;
solitary laser thresholdIth � 36.66 mA). The tempera-
ture of the laser is stabilized to better than 0.01±C. The
beam is collimated and directed toward a high reflectio
mirror (R � 99%) located at 50 cm from the laser, which
redirects the beam back to it. An antireflection coated le
( f � 25 cm) is placed within the cavity in order to focus
the beam into the mirror, which seems to improve th
coupling efficiency. The optical feedback strength is co
trolled by an acusto-optic modulator (AOM) placed insid
the cavity, in such a way that a variable amount of ligh
can be removed from the zero order thus reducing the fe
back level. The intensity output is detected by a 1 GH
bandwidth photodiode and the signal is analyzed with
HP 54616B 500 MHz digital oscilloscope. In this work
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we are interested in the slow dynamics, i.e., time sca
much larger than the external cavity round-trip tim
(t � 3 ns). Actually, the short-time dynamics are washe
out by the use of a 30 MHz low-pass filter. Different dy
namical scenarios are observed as the parameters (cur
feedback) are varied, which are extensively described
the literature (see [6], and references therein).

For pump values considerably smaller than the solita
laser threshold the laser intensity stays constant in tim
For pump values close to the solitary laser threshold t
intensity shows pulses (dropouts), with a recovery tim
that in our experiment is approximately400 ns, separated
by regions of constant intensity from fractions to sever
microseconds of duration. The last regime [7,8,10,11]
the so-called low frequency fluctuations regime (LFF
A typical time trace is shown in Fig. 1(b). A complete
description can be found in [12].

FIG. 1. (a) Experimental setup: LD, laser diode; PD, ph
todiode; OSC, digitizing oscilloscope; C, collimator; L, lens
M, mirror; AOM, acusto-optic modulator; TEC, thermoelectri
cooler. (b) Time trace of the intensity as a function of tim
in what is called low frequency fluctuations (LFF) regime, dis
playing some clusters.I � 37.63 mA; VAOM � 0 V .
© 1999 The American Physical Society
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In this work we deal with the statistics of time inter-
vals between dropouts, which are determined by digitiz-
ing and using a peak-detecting algorithm until 104 peaks
are recorded. With maximum feedback (AOM voltage,
VAOM � 0 V) we obtain a threshold reduction �Ith 2

Iext��Ith � 0.11, where Ith and Iext stand for the solitary
laser threshold current and the external-cavity laser thresh-
old current, respectively. Approximately 80% of the emit-
ted light is reflected back toward the laser. For AOM
voltage VAOM � 9.8 V the amount of feedback is reduced
by 5% and the threshold reduction is lowered for about
10%. All the measurements were made with the same
alignment conditions of the external mirror. In this situ-
ation, the distribution of time intervals shows a double-
peaked structure (Fig. 2). The left side peak corresponds
to consecutive dropouts that constitute what are usually
called “clusters” [Fig. 1(b)]. The right side peak corre-
sponds to statistically distributed events (i.e., long term ex-
ponential decay) [7].

Figure 2(a) shows a family of histograms for different
pumping currents and no voltage in the AOM. As the
pumping current is increased from 37.22 to 37.91 mA,
the peaks at the right are higher, centered at smaller time

FIG. 2. Probability distributions of time between dropout
events in the laser experiment (a),(b) and in the model
(c),(d). Experimental histograms (with a bin size of 0.04 ms):
(a) VAOM � 0 V and different current values (in mA): 37.22,
37.36, 37.49, 37.63, 37.77, and 37.91, corresponding to increas-
ing rightmost peak amplitudes; (b) I � 37.63 mA and different
VAOM values (in V): 0, 5.8, 6.8, 7.8, 8.8, and 9.8, corresponding
to increasing leftmost peak amplitudes. Interspike histograms
of the x variable for the system described by Eqs. (1) and (2)
(with a bin size of 1 a.u.): (c) e2 � 0.5 and different values of
e1: 0.22, 0.23, 0.24, 0.25, 0.26, and 0.27, corresponding to in-
creasing rightmost peak amplitudes; (d) e1 � 0.25 and different
e2 values: 0.5, 0.48, 0.46, 0.44, 0.42, and 0.4, corresponding to
increasing leftmost peak amplitudes.
values, and decay faster. In addition, the peaks at the
left do not change appreciably, neither in height nor in
location. Figure 2(b) depicts a family of histograms for
different AOM voltage and I � 37.63 mA. In this case,
the peaks do not change their location, but their relative
heights do. The exponential decay of the rightmost peaks
remains almost unchanged. The two characteristic times
of the interspikes can directly be observed in the time series
data [Fig. 1(b)]. As the feedback is decreased, the clusters
contain more pulses. Inspecting the time series we check
that these two characteristic times are present for several
alignment conditions (the optimum one among them). The
results reported in this work correspond to an alignment
that enhances the resolution of the peaks in the histograms.

Let us explore a dynamical model which could account
for these observations. It was recently proposed, based
on experimental observations, that the semiconductor laser
with feedback behaves as an excitable system within the
LFF regime [6]. Excitability was recently also found in a
widely used model for the phenomenon [10]. It is a typi-
cal strategy in nonlinear dynamics to find paradigmatic
equations (if possible the simplest ones) presenting fami-
lies of solutions with a desired feature. To study excitable
behavior, it is possible to analyze the behavior of a sys-
tem close in parameter space of an Andronov bifurcation
[13]. In such a case, three fixed points coexist: a repulsor, a
saddle, and a node. Their manifolds are organized as fol-
lows: the unstable manifold of the saddle is the stable
manifold of the node, and the saddle is connected through
its stable manifold with the repulsor (see Fig. 3). The
equations we are studying are [9]

x0 � y , (1)

y0 � x 2 y 2 x3 1 xy 1 e1 1 e2x2, (2)

with �x, y� [ R2, and e1, e2 [ R1. Within the excitable
regime (region II of Fig. 3), an initial condition close to the
node, subject to the action of noise, may cross the stable
manifold of the saddle to relax after a long excursion in
phase space. We associate this pulse with a dropout event
of the laser intensity. In order to obtain excitable pulses
in our model, we added a Gaussian white noise term in
Eq. (1) with zero mean and variance D � 1023.

Now, we will focus on the study of the interspike time
distributions in our model. The rate of escape from the
node is ruled only by local properties, and can be de-
scribed in terms of Kramers’ formula [1,4]. The theory
also predicts a wide peak in the probability distribution,
with a fast rise for short times and an exponential tail
for the longer ones. Usually, for excitable systems, it
is assumed that spikes are triggered only from a quies-
cent state. However, in our model it is possible to have
an early-triggered spike if a trajectory crosses the stable
manifold of the saddle at some point before reaching the
node. In such a case the interspike time equals the time
of flight of a trajectory following the unstable manifold of
293
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FIG. 3. Bifurcation diagram and phase portraits for the system
described by equations in the text. In regions I and II there
are three fixed points: a node, a saddle, and a repulsor.
Crossing the separatrix to region III, the saddle and the
attractor collapse. The two lower regions display a qualitatively
different behavior. In region I the unstable manifold of the
saddle approaches a limit cycle. In region II the unstable
manifold of the saddle is the stable manifold of the node and
the system behaves as an excitable one. Dotted lines indicate
the values at which the histograms of Fig. 2 are obtained: A
corresponds to Fig. 2(c) and B corresponds to Fig. 2(d).

the saddle. This second characteristic time superimposes
another peak in the histogram. Then we are able to repro-
duce the bimodal distributions observed in the experiment
(see Fig. 2).

In agreement with the experimental observations, the
peak on the left is associated with clusters of dropout
events and the other peak to much slower escapes from
a quiescent state. From a geometrical point of view,
the leftmost peak depends on the distance between the
manifolds of the saddle (the unstable which guides the
trajectory and the stable which acts as a threshold) [14],
while the rightmost peak is related to the distance between
the saddle and the node. This correspondence can be seen
in the phase portrait displayed in Fig. 4.

We now study how the histograms are varied as we
move the two parameters. From Fig. 3 it can be seen that
the approach to the Andronov bifurcation can be controlled
with e1, while the distance to a saddle loop global bifur-
cation can be controlled by changing e2. Thus, our first
parameter is the main one responsible for the distance be-
tween the fixed points and consequently the exponential
decay of the second peak. As e1 is raised the escapes
from the node become faster and the peak grows. The
peak at the left remains almost unchanged. This behavior
is exactly what is observed in the laser experiment as the
current is varied [compare Figs. 2(a) and 2(c)].

On the other hand, e2 affects the distance between mani-
folds and therefore it also affects the probability of an early
crossing. For a fixed escape rate from the node, as we de-
crease the value of e2, the probability of cluster production
increases. Hence, the first peak in the histogram increases
at the expense of the second one. Again, we easily repro-
294
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2 2.5

Y

X

S

U

A

FIG. 4. Phase portrait for the system described by Eqs. (1)
and (2) with added noise and parameter values: e1 � 0.26 and
e2 � 0.44. The dotted lines show the stable (S) and unstable
(U) manifolds of the deterministic saddle and the solid line is a
portion of trajectory obtained when noise is added. We show
four spikes, three of which are originated from escapes from
the node and one early-triggered spike (A) from a crossing over
the stable manifold of the saddle. This last spike corresponds
to one “cluster” and adds one count on the leftmost peak of the
histogram.

duce the experimental results varying the amount of feed-
back. This is displayed in Figs. 2(b) and 2(d).

Note that the bimodal distribution holds even after the
Andronov bifurcation (region III of Fig. 3) takes place.
This can be understood by noting that a region of slow
dynamics arises as a scar of the saddle node bifurcation
in the limit cycle. The two peaks correspond to trajecto-
ries reinjected before and after this slow dynamics region.
Also in region I we can observe two characteristic times,
but the inspection of the time series allows us to distin-
guish it from region II through the presence of large clus-
ters corresponding to visits to the limit cycle.

Noise driven excitable systems can display complex
time evolutions. Yet, the validation of such a scenario is
by no means trivial. Indirect tests have been performed [6]
that consist in the inspection of the response of the system
to a periodic forcing. Instead, we decided to assume
excitability and compare the evolution of the histograms
of the interspike times with what is observed in a minimal
model. The remarkable agreement between our dynamical
caricature and the experiment builds confidence on the
excitable plus noise model.

In this work we analyze the interspike time distribution
in noise driven excitable systems. In particular, we study
a system with an attractor, a saddle, and a repeller. We
relate the statistical features of its solutions with the phase
space organization of the invariant manifolds of the fixed
points of the noise-free system. It is well understood that
an initial condition in the neighborhood of the deterministic
node can eventually cross a barrier (in our case, the stable



VOLUME 83, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 12 JULY 1999
manifold of a deterministic saddle) when the system is
subjected to noise. What we show now is that noise can
play a crucial role in the behavior of the system before it
returns to the initial neighborhood. In this case, the global
shape of the invariant manifolds can qualitatively alter the
interspike histograms, leaving there their fingerprints. As
we have shown, the phenomenon can be observed even
when the thresholds are not given by manifolds but their
scars. This allows us to claim that this effect can be
also observed in more general excitable systems with one
fixed point, as long as the phase space is preparing a
saddle repeller bifurcation [15] in the neighborhood of the
attractor.
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