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In this work, we analyze the degree frequency distribution in the yeast protein interaction network by
studying a previously proposed duplication network model. This model correctly predicts the observed degree
distribution sa power law for large degree values and a departure from this behavior for small degreed. We
numerically and analytically characterize this distribution as a mixture of random and power-law behavior, and
make a comparative study of the robustness of the network model against realistic perturbations. We conclude
that the particular distribution observed in both the model and the experimental data has many advantages in
terms of dynamical and topological robustness and could have emerged in the evolutionary history as a sort of
compromise between purely deterministic and random underlying mechanisms of network growth.
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The study of complex networks has seen an enormous rise
in interest in the last few years, particularly since the discov-
ery that a large variety of social, biological, and communi-
cational networks share some common topological properties
that deviate from those of random networksf1g. Among the
most studied and celebrated of these topological properties
are the small-world and scale-free features. Scale-free net-
works are highly heterogeneous: very few highly connected
nodessor “hubs”d organize the wiring, and the frequency
distribution of connectivity of nodes follows a power law,
which is interpreted as a signature of nontrivial behavior.

The emergence of scale-free networks in the biological
contextsmetabolic and protein interaction networksd has cap-
tured a great deal of attention because of the possible evolu-
tionary advantages of a scale invariance at the level of cel-
lular organizationf2g. It was argued that the high resilience
of some organisms against gene removal in gene-knockout
experiments has its counterpart in the robustness against ran-
dom node removal of the underlying scale-free network.
Moreover, a topological property of the protein network
snode connectivityd apparently correlates with protein dis-
pensabilityf3g. However, there remain several controversial
issues. The apparent robustness against gene removal is
strongly conditioned by the nutrient-rich environment in the
experimentsf4g, and it is not clear at all if the connectivity of
a protein in the network is related to its evolutionary impor-
tancef5g. Also, there is some controversy regarding whether
the apparent scale-free behavior is a result of selection or a
side effect of the dynamics of network growthf6g. Further-
more, as we will show in this work, the scale-free nature of
the protein interaction network can be hardly demonstrated
from the experimental data available.

In a protein interaction network, two proteins are neigh-
bors if they physically interactin vivo. These networks are
obtained from a wealth of binary protein-protein interaction
data from a variety of experiments: high-throughput meth-
ods, such as the two-hybrid assayf7g, and mass-
spectrometric complex identificationf8g. The interactions de-
rived from different datasets only match partially, and even
though these datasets are cured in diverse databases, a host
of false positives and/or negatives still remainsf9g. Surpris-
ingly, the only topological feature that is conserved between

different datasets and remained qualitatively similar while
new interactions were added is the distribution of connectiv-
ity between nodes, which has been claimed to be scale-free
in previous works. Other topological magnitudesssuch as the
clustering coefficientd appear to be more sensitive to dataset
variation.

In this work, we characterize the distribution of connec-
tivity sor degreed between nodes in the yeast protein interac-
tion network. The baker’s yeastsS. cerevisiaed is the model
organism of eukaryotes, and its interaction network dataset is
the most cured among the species studied. We compare this
network to a simple yet successful model of network growth
via partial duplication of nodes introduced by Soléet al.
f10g. This model mimics the main process of proteome de-
velopment: gene duplication followed by a functional diver-
gence of the cloned pairs. Unlike previous studies on dupli-
cation models that emphasized the scale-free behavior of the
degree distribution for large connectivity valuesf11g, we
study the behavior of the distribution over the entire range of
connectivity values. We perform a maximum likelihood
analysis of the model and refine a previously derived analyti-
cal distribution. We also show that this particular shape is
robust in parameter space and arises from the simultaneous
action of an implicit preferential attachment and a random
rewiring.

Finally, we compare the robustness of the yeast protein
interaction network to the networks obtained from three dif-
ferent modelssduplication-divergence, Barabási-Albert, and
Erdös-Renyid and discuss the results obtained in the light of
more recent studies in protein dispensability and topological
robustness.

Despite the enormous variety of proteins, they can be
classified into families, according to similarities in structure
and function. These families are explained by the hypothesis
that their members have evolved from a common ancestor. It
is thought that this evolution took place mostly through
single or multiple gene duplication. After the random dupli-
cation of a gene there will be two cloned genes expressing
the same redundant function. As a consequence, one or both
duplicates should experience relaxed selective constraints
and be more prone to mutations, becoming nonfunctional or,
in some cases, gaining novel and beneficial functions. In this
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way, new genes that code for new proteins are created within
a genome.

This mechanism can be translated into a few simple grow-
ing rules for a network model, as proposed by Soléet al.
f10g. A description of the rules of the model follows. Starting
from a small and arbitrary initial network, the graph consist-
ing of N0 nodes andE0 edges suffers the following modifi-
cations in each discrete time step:sid a node is randomly
selected and copied, including its edges;sii d the edges of the
new node are deleted with probabilityd; andsiii d new edges
are randomly added between the copied node and any other
node in the graph with probabilitya.

Step sid mimics a gene duplication process, where the
cloned nodes are linked to the same neighborssi.e., have the
same functionsd, and stepssii d and siii d represent functional
divergence. From a geometrical point of view, the main at-
tribute of a node is its degreek snumber of edgesd.

This scheme is intended to capture only global topological
properties of the proteome, since no protein functionality is
included. However, it is remarkable that such a simple, bio-
logically inspired model displays a degree frequency distri-
bution pskd nearly identical to the real proteome. Previous
worksf10,11g have studied the contraints and possible values
of the two free parameters of the model. By focusing on the
average degree of the networkkkl, it is straightforward to see
that: sid the parametera must be normalized by the total
number of nodes. We consequently definea=b /N as the
probability sper noded of adding new edges to the cloned
node and useb as our control parameter.sii d In order to
obtain a stationary distributionpskd, the deletion parameter
ought to bed.0.5.

In order to gain some insight into the mechanisms that
shape the network generated by this model, we start by writ-
ing down the variation over one time stepsi.e., the master
equationd of the average number of nodes withk edgesNk.
Note that, since the growing of the network is uniform, the
size of the networkN plays the role of the discrete timet
=N−N0. The master equation forNk was studied by Kimet
al. f11g. However, while they focused in the large degree
limit, we will focus on the prediction of the model for low
and intermediate connectivity values. This master equation
can be written as

NksN + 1d − NksNd = Fa +
sk − 1d

N
s1 − dds1 − adGNk−1sNd

− Fa +
k

N
s1 − dds1 − adGNksNd + GksNd,

s1d

where

GksNd = o
k8=0

N Nk8

N o
i=0

minsk,k8d S k8

k8 − i
DSN − i

k − i
D

3dk8−is1 − ddiak−is1 − adN−k. s2d

A connection with the probability density for the degree
of the network can be made for large network sizes

pskd<Nk/N. The first two terms on the right-hand side of
Eq. s1d correspond to the contribution of nodes that are not
the duplicated one. Factors of the form ofk/N stand for the
probability of a node of degreek to have a neighbor dupli-
cated, increasing its degree by unity. These terms act only
conveying the probabilitypskd from lower to higher degree
values. On the other hand, the last term corresponds to the
degree of the new node and contributes to all degree values.
We will refer to this last term as the source termGskd. The
degree of the duplicated node is selected from the degree
distributionpsk8d=Nk8 /N, as expressed in the first sum, and
it undergoes a series of possible combinations ofd and b,
condensed in the second sum, leaving as a result a distribu-
tion of new nodes with degreek.

It is interesting to analyze two limiting cases of the
model: a case without creation of new edgessb=0d and the
case where all edges are newsd=1 andb.0d. In the first
case, the number of isolated nodesN0sNd can only vary when
a duplicated node with degreek8 loses k8 edges. Then,
the variation in the population of the zero statesisolated
nodesd is

N0sN + 1d − N0sNd = o
k8=0

N Nk8sNd

N
dk8. s3d

It is straightforward to analyze the stationary limit
NksNd=pskdN stime dependence is throughN onlyd, where
pskd=0 for kù1 andps0d=1, so the network becomes the
trivial one. In this limiting case, there is a decoupling be-
tween the dynamics of the isolated nodes and the rest of the
network. When a node becomes disconnected it cannot be
reconnected and, in theN@1 limit, the fraction of connected
nodes is negligible. If we are not interested in the stationary
limit, then it can be demonstrated that the connected nodes
have a power-law distributionf12g. In fact, this is the only
case when one can obtain a pure scale-free degree distribu-
tion.

The other extreme case is when no edges are inherited by
the cloned node. This is, actually, a purely random growing
network, therefore, the distribution of connectivity between
nodes is Poissonian.

Between these two limiting cases we obtain a mixture of
power-law and random behavior. For 1.d.0.5 andb.0
the degree distribution of the model displays a distinctive
shape that is qualitatively similar to those of the experimen-
tal networks. This shape has a clear power-law tail only for
the most connected nodessapproximately fork.20d and dis-
plays a severe departure of one or two orders of magnitude
for low connectivity values.

We now characterize this particular distribution by deriv-
ing an approximate analytic solution of the master equation
valid for all connectivities in the stationary limit. We follow
a similar approach to that used by Krapivskyet al. in f13g.
Assuming an asymptotic solution for the degree distribution
NksNd=pskdN, the source terms2d can be rewritten as
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Gk
` ; lim

N→`
Gk = o

k8=0

`

psk8d o
i=0

minsk,k8d S k8

k8 − i
D

3
dk8−i

sk − id!
s1 − ddibk−ie−b s4d

and the rate equations1d becomes

pskd = fb + sk − 1ds1 − ddgpsk − 1d − fb + ks1 − ddgpskd + Gk
`.

s5d

This equation reveals an implicit preferential attachment
rule for the duplication model, since factors linear withk
appear in terms corresponding to nodes linked to the dupli-
cated onef14g. This preferential attachment rule is controlled
by parameterd and guarantees a power-law degree distribu-
tion f1g. On the other hand, terms withb contribute to the
random character of the network growth. The roles played by
the parameters of the model were apparent when we previ-
ously analyzed the two limiting cases. In order to obtain a
more explicit expression for the stationary degree distribu-
tion we can derive, by iterating the preceding formulas5d,
the following recurrence relation:

pskd = ps0d
Sk − 1 +

b

1 − d
D!S1 + b

1 − d
D!

S b

1 − d
− 1D!Sk +

1 + b

1 − d
D!

+
1

s1 − dd
Hskd,

s6d

where

Hskd = o
j=0

k−1 Sk − 1 − j +
1 + b

1 − d
D!Sk − 1 +

b

1 − d
D!

Sk +
1 + b

1 − d
D!Sk − 1 − j +

b

1 − d
D!

Gk−j
` .

s7d

The coefficientps0d is calculated solvings1d for k=0.
As it was previously addressed, in thek@1 limit, the

expressions6d becomes a power-law with ad dependent ex-
ponentf11g. Simulations confirm a slow convergence of the
tail of pskd to this behavior. The power-law distribution is
valid for largek because this limit endows the implicit pref-
erential attachment with enough power to shadow the purely
stochastic process of the model, controlled byb. The re-
quirement for the onset of this regime isk@ s1+bd / s1−dd,
since this is the most relevant parameter repeatedly neglected
when we approximated the factorials ins6d using the Stirling
formula. In order to obtain an analytical approximation for
the full degree distribution, we replacepsk8d in the source
term Eq.s4d by a reasonable zeroth-order approximation and
obtain a first-order approximation usings6d and s7d. To im-
prove the accuracy of the approximation, one could repeat
this process by inserting the first-order approximation in the
source term and obtaining a second-order approximation and

so on. Therefore it is possible to calculate an approximate
distribution with a reasonable degree of accuracy much more
efficiently than numerically solving Eq.s1d.

Let us now compare the degree distribution of the model
to the degree distribution obtained from a real proteome. As
we already pointed out, the distributions are qualitatively
similar for all parameter values that bring a stationary distri-
bution sexcluding some extreme casesd. Furthermore, for
some parameter values of the model we can also obtain a
quantitative agreement between the two distributions. We
used cured data from the DIP databasef15g for the baker’s
yeast sSaccharomyces cerevisiaed proteome, the model or-
ganism of eucaryotes.

We performed a maximum likelihood analysis of the
model, assuming a Gaussian dispersion of the experimental
pskd values and obtained both a pair of optimal parameters
sb=0.22,d=0.55d and a goodness of fit estimation. A maxi-
mum likelihood test against a power-law distribution gave us
a goodness of fit estimator two orders of magnitude below of
that of the model. Even when we take into account onlyk
.20 valuessa range where the power law is well estab-
lishedd, the goodness of the fit estimator is still greater for
the model. Note that the power-law range includes only the
5% of the population. A noteworthy fact is that if we disre-
gard thek=0 value, a lognormal distribution fit the experi-
mental distribution quite well.

It should be pointed out that there are no consistent esti-
mation measures of the divergence parameters. Hence, the
only purpose of fitting the model to the experimental data is
to discern if these mechanisms of evolution could be respon-
sible for qualitatively shaping the proteome.

In Fig. 1 we show the degree distributions obtained from
the yeast proteome, simulations of the model with parameter
values obtained from the maximum likelihood analysis, and
the approximate analytic solutionsfourth orderd obtained
from Eqs.s6d ands7d. As can be seen in the figure, the model
correctly predicts the departure of the power-law behavior
for low connectivity values.

FIG. 1. The degree distribution obtained from averaged simula-
tions of the duplication model evolvedN=6000 time steps with
parametersb=0.22, d=0.55 sthick lined compared to the distribu-
tion derived from the yeast proteomesblack circlesd, the analytic
approximation expressed by Eqs.s6d and s7d sthin lined and the
asymptotic power-law distribution for highk valuessdotted lined.
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As far as we know, previous works have not focused on
the departure from the scale-free behavior for lowk values.
The work of Jeonget al. f3g proposed a phenomenological
curve: a generalized power law with an exponential cutoff
for large k values, and subsequent studies focused on the
scale invariance as the relevant feature. Now two questions
naturally arise:sad Is this departure from the power-law be-
havior significant or is it a product of experimental biases?
sbd Does it reflect some topological property of the network
that is relevant to the protein interaction network?

In order to answer the first question we checked that the
departure is not a product of experimental biases of false
negatives and/or positives of the assessing methods. We stud-
ied three different datasets for the yeast proteome: noncured
data from double-hybrid experimentsswith many false posi-
tivesd, core dataset from the DIP databaseswith presumably
many false negativesd, and the more confident cured data
from DIP sdisplayed in Fig. 1d. In the three cases we ob-
served the low connectivity departure and the model fitted
the dataset for some parameter values. Even for protein in-
teraction networks datasets obtained from more recent high-
throughput experiments from other speciessD. melanogaster
f17g and C. elegansf16gd with less reliablesor not curedd
data, we observed a qualitatively curved distribution and a
good agreement with the duplication modelsdata not
shownd.

Our second question can be investigated through the more
relevant property derived from scale-free networks: its topo-
logical robustness. Previous works that highlighted the
power-law character of the distributions claimed that being
scale-free, protein networks could be more robust to random
mutations and, therefore, in a more favorable positionsfrom
an evolutionary point of viewd. In fact, it is well known that
scale-free networks are more robust than random networks
under accidental node removalf18g. However, some of the
“worst” node attacksssuch as hubsd could be much more
harmful in scale-free than in purely random networks. From
this last observation it is clear that scale-invariant networks
could not be the more robust topology in the long termsal-
though rare, hubs removal could happend.

In order to investigate this last hypothesis we performed a
comparative analysis for the topological robustness for three
different models with three characteristic degree distribu-
tions: sad a random network or duplication model withd=1
speaked distributiond, sbd a duplication model with param-
eters that fit the curved experimental distribution, andscd
pure scale-free distributionsobtained with the Barabási-
Albert modelf1gd.

The property of topological robustness takes account of
the insensitivity of some global measure of the network to
specific changes in its structure. In a biological context we
have to define a good global equivalent of “fitness” or viabil-
ity for a protein interaction network and a realistic perturba-
tion in its internal structure. Because there are no flows in-
side a topological representation of the protein interaction
network, the more adequate measure of viablity is the topo-
logical closenessf19g salso called efficiency inf20gd. This
quantity grows with both the degree of compactness of the
network and the closeness between nodessmeasured by the
inverse of the path lengthd and decreases as the network

breaks up into components and as the length of the paths
between nodes increasesstwo things that clearly deteriorate
the performance of the protein interaction networkd.

The usual perturbation for the internal structure of a net-
work is to sequentially remove nodes until the network
breaks up. However, this is not a biologically reasonable
perturbation because a protein interaction network with half
of the nodes removed is not viablef4g. We make use of a
more realistic failure simulation: a random deletion of one or
very few genessnodesd. Also, as we are interested in all
possible cases, we take account of all closeness variations
over the whole network against all possible node removals.
In this way we can measure the network robustness in terms
of a topological analog of the viability of a protein network
against realistic perturbations.

In Fig. 2 we display the histograms obtained for the rela-
tive closeness variation against all possible single-node re-
movals for the three network models. In all cases we started
with networks ofN<1000 andkkl<2. Even when the three
networks have an average closeness variation of the same
order of magnitude, the three distributions are clearly differ-
ent. In the case of the random network there are many node
removals that cause drops in the closeness of 1%, but there
are no cases of catastrophic node removalssnone of the per-
turbations cause drops greater than 5%d. On the contrary,
most of the perturbations of the pure scale-free network pro-
duce a very small effect in the global closeness, while there
is a small but significative fraction of node removalss5% of
the casesd that causes great closeness variationssdrops of
more than 5%d and a few that cause a catastrophic drop-off
in global closenesssnote the long tail of the distributiond. In
this context, the duplication model represents an intermedi-
ate case. This suggests that the mixture of being scale-free
and random could have emerged as a sort of compromise
between two behaviors that have their own benefits under
different circumstances.

From the point of view of a living organism, a scale-free
proteome represents an advantage in the short term, but over

FIG. 2. Histograms of the relative variation of the global close-
ness of the networks, after removing a single node. The networks
were created by a purely random modelssquaresd, the duplication-
divergence model with parameter valuesb=0.2 andd=0.65 stri-
anglesd, and the Barabási-Albert modelscirclesd. Computations are
made over 100 realizations for each model, every realization con-
sisting of the same number of nodessN<1000d and links skkl
<2d.
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long evolutionary time scales some randomness wiring could
also be beneficialf21g. The curved degree distribution ob-
served in all experimental protein interaction networks de-
rived to the date strongly suggests that a mixture of scale
invariance and randomness could be more appropriate than a
perfect scale-free network in the long term and a purely ran-
dom network in the short term. Furthermore, this distribution
can be obtained in a very robust manner from a simplest
model of duplication and divergence of genes, which has a
clear biological basis. In the divergence processsrewiring of
nodesd there is some memory of the copied nodesthat con-
veys a deterministic preferential attachment ruled and some
randomness in the rewiring. The balance between these two
processes could have emerged in the evolutionary history as
a product of natural selection over the whole protein net-
work.

In this work, we assess the reliability of a simple dupli-
cation model able to describe the degree distribution ob-
served in the yeast protein interaction network. We scruti-

nized the claimed scale-free behavior of this distribution and
pointed out a severe departure in both the duplication model
and experimental data. The emerging distribution was ex-
plained as an interplay between a preferential attachment rule
and a purely random process. Even when we cannot draw
general conclusions for the protein interaction network from
the study of a single species, our prelimany studies of the
network robustness under realistic perturbations suggests
that the interplay between deterministic evolutionary
memorysfrom the duplication processd and pure randomness
make possible a better environmental response for a biologi-
cal network than a purely random or deterministic preferen-
tial attachment underlying mechanism.
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