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Distribution of interspike times in noise-driven excitable systems

M. C. Eguia and G. B. Mindlin
Departamento de Fı´sica, FCEN, UBA, Ciudad Universitaria, Pab. I (1428), Buenos Aires, Argentina

~Received 2 December 1999!

Noise driven excitable systems present a dynamics which consists of a complex sequence of pulses. In this
work we analyze their interspike time distribution, and we find that the organization of the invariant manifolds
of the underlying excitable system leaves its fingerprints in it. We derive approximate analytical expressions
for the interspike time distribution.

PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

A system is called excitable whenever its response t
stimulus is qualitatively different depending on whether t
stimulus is smaller or larger than a certain threshold. Ex
able systems then present a dynamical stationary state
ward which every trajectory eventually tends to after a p
turbation: either through a small or large excursion of
available phase space@1#. The paradigmatic example in na
ture displaying excitable behavior is the neuron. Whene
an excitable system is subjected to noise, the continu
kicking can eventually take the system beyond the thresh
and a spiking will take place. The effects of the rando
excitation and the deterministic part of the evolution m
produce nontrivial behaviors. A natural description of th
problem will be in terms of the statistics of times betwe
peaks~likewise, between escapes from the stationary sta!.

Stated in these terms, noise driven excitable systems
be studied in the framework of what is known as esca
problems from metastable states. The seminal contributio
this field has been made by Kramers over 60 years ago@2#.
Since then, the emphasis of these studies has been o
computation of the rate of escapes for different potent
~most of them dictated by the particular system under stu!,
subjected to different types of noise~white, colored!, also
under different approximations@3#. The underlying idea be
hind those works was that the details of the distributio
were consequences of the particularities of the system,
therefore only mean quantities were worth computing. Mo
over, only averaged quantities were considered adequa
be compared with experimental data.

Those statements are correct, but recent results h
shown that some features of the interspike time distribut
contain information on the qualitative properties of the d
terministic part of the system: more precisely, the organi
tion of the invariant manifolds of the fixed points of th
noise-free case~invariant manifolds are not generally define
for noisy systems! @4#. In a recent work, the bimodal natur
of the interspike time distribution for a certain class of no
driven excitable systems was discussed in these terms@5#. In
this work we will address this issue. We will study the d
tailed structure of the interspike time distribution in order
predict the appearance of the two characteristic times
how they depend on the particular features of the system.
also want to unveil whether these characteristic times will
present in other excitable systems. Numerical, analyt
PRE 611063-651X/2000/61~6!/6490~10!/$15.00
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tools are required, as well as a good understanding of
underlying deterministic system.

The existence of a noise induced frequency for a no
driven excitable system was first reported, to our knowled
by Sigeti in 1989@6#. He studied the Adler equation~an
infinite dissipative limit of the equations describing the b
havior of pendulum with torque! subjected to noise, and re
ported the existence of a characteristic time for the esca
from the neighborhood of the stationary state. Several
pects of this phenomenon have been recently described i
pendently by other authors@7#. In the same spirit, Stone an
Holmes have described the interspike time distribution o
noise driven system presenting a stable homoclinic conn
tion @8# and derived an analytic expression for the probabi
distribution. In this work we will study a class of excitab
systems having both characteristics mentioned above: e
ability and an homoclinic connection for certain parame
values. Hence, we expect to re-encounter the previous di
butions as parameters are changed. In a certain regio
parameter space the two distributions will coexist, giving r
to the two characteristic times.

This work is organized as follows. Section II is devoted
a fast review of the dynamics of the deterministic pendul
with torque. Although this system is a text example, some
the results will be briefly reviewed to present the notati
used throughout the rest of the work. Section III deals w
the dynamics found when a pendulum with torque presen
infinite dissipation is subjected to noise. At this point, w
will review the classic results by Kramers. The case of fin
dissipation will be discussed in Sec. IV. We will study th
emergence of another characteristic time in the intersp
time distribution. The discussion and the conclusions will
presented in Sec. V.

II. EXCITABLE SYSTEMS: THE PENDULUM
WITH TORQUE

As mentioned in Sec. I, a system is called excitable i
amplifies inputs whenever these are larger than a gi
threshold. Then, the ingredients that are necessary to
semble an excitable system are:~a! a stable fixed point,~b! a
threshold and~c! a mechanism able to reinject the traject
ries crossing the threshold into the neighborhood of the fi
point. A simple way to account for this reinjection is throug
the topology of the phase space. For example, inS1, we
simply need a pair of~stable and unstable! fixed points to
6490 ©2000 The American Physical Society
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PRE 61 6491DISTRIBUTION OF INTERSPIKE TIMES IN NOISE- . . .
create an excitable system. This is precisely what we
with the Adler equation

x85m2cos~x!. ~1!

When m,1, we have two fixed points atx5
6arccos(m). Let us kick a system initially at the stationar
solution, with a perturbation larger than the distance betw
the two fixed points. The trajectory will then evolve retur
ing to the stationary state after completing one full turn to
circle @see Fig. 1~a!#. Sigeti studied the dynamics of thi
system subjected to noise, and found a maximum in the
togram of the interspike time distribution~in this context, we
are calling ‘‘spikes’’ the full turns aroundS1). The exponen-
tial decay of the distribution, on the other hand, is kno
since the work of Kramers. The interesting consequenc
the existence of a maximum in the interspike time distrib
tion is that even if the system has no periodic orbits,
coupling to a noise source gives rise to a quasioscillat
behavior. This characteristic time can be controlled with
intensity of the noise, and its dispersion has a minimum fo
certain noise level. This effect has been recently describe
a ‘‘coherent resonance’’@7#.

FIG. 1. ~a! The simplest excitable system inS1 described by
Adler equation Eq.~1! with a node~N! and a repulsor (S). ~b!
Scheme of an excitable system living inR13S1 ~infinite cylinder!,
with two fixed points: one saddle~S! and one stable focus (N). The
unstable manifold of the saddle (Wu) feeds the focus embracing th
cylinder.
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In a phase space with the topology of the cylinderR1

3S1, excitability can also be obtained with two fixed point
a saddle and an attractor. This is displayed in Fig. 1~b!. No-
tice that both branches of the unstable manifold of the sad
feed the attractor, embracing the cylinder. The stable m
fold of the attractor~coming now from infinity!, creates now
the threshold of the excitable system.

In this work, we will show that in bidimensional system
like this, a second characteristic time can arise in the his
gram of the interspike time distributions in the form of
second peak. This pseudoperiod is also induced with no
and is closely linked to the existence of a stable manifold
the saddle point, locally tangent to a linear one associa
with a finite ~negative! eigenvalue. For this reason this pea
cannot be found in the one dimensional system descri
above, which can be thought of as the infinite dissipat
limit of the bi dimensional system.

Both scenarios can be obtained as different limits of
pendulum with torque. Let us assume a simple pendulum
massm, lengthl, in a gravitational fieldg, under the action of
a torquet. Dissipative terms are assumed linear and c
trolled with the parameterg. The dynamical variablex de-
scribes the angle with the horizon, and the system is coup
with a thermal bath of temperatureT. Therefore, the system
is ruled by@9#

x91gx81g/ l cos~x!5t/ml1j~ t !, ~2!

^j~ t !j~ t8!&52~gKBT/ l 2m!d~ t2t8!, ~3!

where j(t) is a Gaussian noise of zero mean, andKB is
Boltzmann constant. Let us callD5gKBT/ l 2m, d5g/ l and
F5t/ml, where we write our systems as

x85y, ~4!

y852gy1F2d cos~x!1j~ t !, ~5!

^j~ t !j~ t8!&52Dd~ t2t8!. ~6!

In Fig. 2 we show the parameter space partitioned in th
regions where the dynamics of the noise free system is qu
tatively different. In region III we have periodic solution
~the torque is strong enough to force the system to per
nently go aroundS1). Region II presents an excitable dy
namics as the one described at the beginning of the sec
with two fixed points~a saddle and an attractor!, while re-
gion I presents the coexistence of an attractor, a saddle,
an attracting periodic orbit. The separatrix between region
and II is defined by a homoclinic bifurcation~saddle loop!, in
which the upper branches of the stable and unstable m
folds coincide. The bifurcation limiting regions II and III is
saddle node, one which has a global connection between
manifolds of the fixed points, in such a way that after t
bifurcation a limit cycle remains. Finally, between regions
and III an ordinary saddle-node bifurcation takes place. T
three branches meet at the tripartite point saddle-no
homoclinic bifurcation~SNH! which is a codimension two
point. The results that we will present can be generalized
other unfoldings of this codimension two bifurcation.
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FIG. 2. Bifurcation diagram
and phase portraits for the syste
described by Eqs.~4!,~5!. In re-
gion III we have periodic solu-
tions ~the torque is strong enoug
to force the system to rotate pe
manently!. Region I displays the
coexistence of an attractor,
saddle, and an attracting period
orbit, while region II presents an
excitable dynamics. The separa
trix between regions I and II is de
fined by a homoclinic bifurcation,
in which the upper branches of th
stable and unstable manifolds co
incide.
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A simulation of the system, Eqs.~4!–~6! is displayed in
Fig. 3 for parameter values within region II, near the SN
point. The interspike histogram@Fig. 3~b!# reveals the exis-
tence of two different statistical behaviors: an exponen
decay predicted by Kramers for long interspike times an
narrow peak for short times. The maximum found by Sig
is eclipsed by the narrow peak, which is associated to

FIG. 3. Temporal series~a! and interspike time distribution~b!
for the pendulum with torque@Eqs. ~4!–~6!# within the excitable
region (F50.9, d51.0, g51.0, andD50.1). The variablex is
displayed modulo 2p, therefore, the jumps of the variable represe
full rotations. The left side peak of the histogram corresponds
consecutive spikes in the time series, usually called clusters. T
are two characteristic times: the leftmost peak and the expone
decay for larger times.
l
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ti
e

presence of cluster of peaks~C! in the time series@see Fig.
3~a!#. As the system is moved away from the vicinity of th
homoclinic bifurcation we return to the wide-peaked dist
bution studied by Sigeti. We will start our analysis in follow
ing Sec. III with this last distribution, which can be found
the high-friction limit of the bidimensional system. This wi
allow us to derive an approximate analytic expression for
interspike time distribution.

III. THE INFINITE DISSIPATION LIMIT

In the case of large friction, Eqs.~4!–~5! can be written,
after the adiabatic elimination of the inertial term, as

x85F/g2~d/g!cos~x!1j~ t !/g. ~7!

Rescaling timet85td/g, and makingh(t8)5j(t)/d, this
equation reads

x85F/d2cos~x!1h~ t8!. ~8!

Having defined a new time and introducing a new difu
sion coefficientR5D/gd, the correlation function of the
noise reads

^h~ t !h~ t8!&52Rd~ t2t8!. ~9!

We have then obtained Adler equation, callingF/d5m.
These equations can be thought of as describing the mo
of a Brownian particle, in the high friction limit, when sub
jected to the biased periodic potential:U(x)5sin(x)2Fx/d,
displayed in Fig. 4.

Now, we are interested in computing, for a set of init
conditions, the distribution of the escape times. Let us be
our program by defining the following expressions, us
throughout the rest of this work.

We are callingP(x,t;x0) the probability of transition
from x0 at t50 to x at t, which satisfies both the Fokker
Planck~or Kolmogorov! equation
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]

]t
P~x,t;x0!52

]

]x
F~x!P~x,t;x0!1R

]2

]2x
P~x,t;x0!,

~10!

with F(x)5F/d2cos(x), and the backward Fokker–Planc
equation~which we will also later use!

]

]t
P~x,t;x0!5F~x0!

]

]x0
P~x,t;x0!1R

]2

]2x0

P~x,t;x0!.

~11!

Let us denote byG(x0 ,t;a,b)5*a
bP(x,t;x0)dx the prob-

ability of remaining at the interval (a,b) at timet, whenever
x0P(a,b).

Finally, we are callingW(x0 ,t)52]G(x0 ,t;a,b)/]t the
probability density of the escape times from (a,b) for an
initial condition in x0P(a,b).

Even if our system is periodic we will study the distrib
tion of escape times from a box enclosing the saddle (xs) and
the node (xn), as displayed in Fig. 4. This will allow us to
generalize later our results to the case of finite dissipat
Now, we choose the proper boundary conditions. It is eas
see that once that a trajectory goes beyondx5b, it is un-
likely a return to the box. Therefore, this can be seen as
absorbing wall. On the other hand, trajectories can ha
reachx52b, and if they eventually do, they will return t
the neighborhood of the deterministic attractor. Therefore
can callx52b a reflecting wall. These conditions can b
written as

P~x5b,t;x0!50, ~12!

]

]x0
P~x52b,t;x0!50. ~13!

Unfortunately, the analytical solution for this equation h
no closed form. However, it is possible to write an infin
set of recursive equations for the moments of the distribu

FIG. 4. Potential associated with Eq.~8! interpreted as the high
friction limit of a Brownian particle. The spiking process can
divided in two parts:~I! the reinjection of the trajectories in the bo
(2b,b) enclosing the saddle (xs) and the attractor (xn), and~II ! the
escape process from this box.
n.
to

n
ly

e

s

n

W(x0 ,t) with closed solutions. The moments can be rela
to the transition probability through

Tn~x0!5E
0

`

tnW~x0 ,t !dt ~14!

52E
0

`

tn
]

]t
G~x0 ,t !dt ~15!

52„tnG~x0 ,t !…0
`1nE

0

`

tn21G~x0 ,t !dt ~16!

5nE
0

`

dtE
a

b

tn21P~x,t;x0!dx, ~17!

where the integrated term vanishes as long asG(x0 ,t)→0
~as t→`), faster than any power. Now, multiplying bot
sides of Eq.~11! by ntn21, and integrating spatially in the
box (a,b) and in time fromt50 to t5`, it is easy to derive
~integrating by parts the left side! the following equation for
the momentsTn @10#:

F~x0!Tn8~x0!1RTn9~x0!52nTn21~x0!. ~18!

It is now clear the gain in stating the problem in terms
the moments: the first derivative of the moments will satis
a first order equation, with closed solutions. Iteratively, w
can ~in principle! solve as many moments as we need
properly approximate the desired distribution~notice that
T051, since we deal with normalized distributions!. All
what is left is to translate the original boundary conditio
for P into boundary conditions forTn . Integrating, we get
thatTn(b)50 andTn8(2b)50. Once these boundary cond
tions are computed, Eq.~18! can be solved since it is a firs
order ~nonhomogeneous! equation for Tn8(x0). Writing
Tn(x0)5uv ~with u the solution of the homogeneous pro
lem!, and solving the two resulting first order equations fou
andv, one finds that

Tn~x0!5
n

REx0

b

dy eU(y)/RE
2b

y

dz e2@U(z)/R#Tn21~z!. ~19!

It is important to keep in mind that the equation und
study has been written after rescaling the original time b
factor ofg/d for the high-friction limit. Also that, within the
same limit, every orbit that leaves our absorbing wall will
reinjected atx52b ~after some mean reinjection time!.
Therefore, all we are concerned with so far is the set
momentsTn(2b).

Even if we have now a prescription for solving our pro
lem, we have to decide whether the integrals written in E
~19! will be approximated in order to obtain expressions
closed forms, or if we will choose to lose elegance by co
puting them numerically. At this point, we find it useful t
revisit Kramers’ results. The purpose is to illustrate whi
approximations are incompatible with our objectives.

In the 1940s, Kramers came up with an approximat
which allowed him to compute the first moment of the d
tribution in terms of local properties of the potential in th
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well (xn) and in the barrier (xs). The core of this approxi-
mation is to convert Eq.~19! to Gaussian integrals. This ca
be achieved by expanding the argument of the exponenti
second order and keeping only the leading terms

T1~x0!5A 2p

RU9~xn!
e„U(xs)2U(xn)…/R

3E
x0

b

dy e2„uU9(xs)u2R…~y2xs!2

5
p

AU9~xn!uU9~xs!u
e„U(xs)2U(xn)…/R

3F12erfS x02xs

lh
D G ,

wherelh5A2R/U9(xn) is a thermal length. This gives, whe
x052b is far enough from the saddle, and returning to t
original variables, the celebrated Kramers’ result

TKramers5
2pg

AV9~xn!uV9~xs!u
e(g/D)„V(xs)2V(xn)…, ~20!

whereV(x)5U(x)d is the real potential.
It is important to notice that, in Kramers’ approximatio

the mean escape time does not depend onx0. It is therefore
possible to write, at the same level of approximation, thenth
moment as

Tn5n! S T1

R D n

. ~21!

Recalling that the moments of the distributions are
Taylor coefficients of the characteristic function~which is
related to the probability distribution by means of a Four
transformation! @11#, it is easy to obtain the distribution
function predicted within Kramers’ framework:

WKramers~ t !5
1

T1
e(2t/T1). ~22!

This distribution fits reasonably well the results for lon
times. Yet, two aspects of the real distribution cannot
captured within this approximation: the impossibility of in
stantaneous escapes„W(0)50… and the existence of a max
mum. This essential feature of the distribution was mis
when we used Gaussian integrals to computeTn(x0) in Eq.
~19!.

Going beyond Kramers’ result is not trivial. Even whe
the moments could be calculated using Eq.~19!, the recon-
struction of the distribution of escape times via the char
teristic function converges so slowly that severe numer
problems arise before obtaining a distribution function qu
tatively better than Kramers’. Moreover, the series obtain
involves cumbersome recurrence formulas and provides
physical insight into the process involved.

Instead, our strategy will consist of first inspecting n
merical simulations of our system in order to elucidate
to

e

e

r

e

d

-
l
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e

origin of the maximum of the escape-times distribution, a
then making a reasonable approximation for the Fokke
Planck equation based on our former observations.

Computing the probability of transitionP(x,t;x0,0)
within the box (2b,b), it is easy to observe that after
certain time, this distribution reaches a stationary lim
~modulo renormalizing the number of particles to account
the escaping ones!. The time necessary to reach this ‘‘st
tionary’’ distribution is approximately the one in which th
escape time distribution has a maximum. After this time,
distribution of escape times is approximately exponen
~i.e., memoryless, consistent with the observation that
space distribution has reached a stationary state!. In other
words, the escape process can be understood in two ste
transient behavior for short times in which the escape tim
grows rapidly, and a stationary distribution for large time
with a unique characteristic time that can be estimated w
Kramers’ law.

Kramers’ approach seems more natural to explain the
ponential tail~actually, Kramers assumed that the metasta
state had reached an equilibrium distribution!. Now, all that
we need is a reasonable approximation for the transient s

To understand the transient behavior, we will focus on
single realization of the random process. Att50 one particle
is injected atx052b. It will descend, more or less ran
domly, toward the node atx5xn and eventually climb the
potential barrier. If the particle can cross the saddle bef
the stationary distribution is reached, it will be part of th
fast growing part of the distribution of escape times. In t
other case, it will be part of the stationary distribution a
will obey Kramers’ law. We will describe the evolution o
the fastest escapes, or equivalently, the transition probab
from x052b to the top of the barrier for times before th
onset of the stationary distribution. The transition probabil
for fixed spatial coordinates displays a step-like form
obvious reasons: at zero time has zero value and, aft
while, it reaches its stationary value. This step function c
be seen as a slow ‘‘turn on’’ of the exponential decay.
other words, we are proposing that the distribution of esc
times can be understood in terms of a product of two diff
ent functions, corresponding to the transient behavior~step-
like function! and the stationary one~exponential decay!.
Now, we attempt to derive the step-like function from th
Fokker–Planck equation. Again, if the true transition pro
ability for our potential has no closed form, then we w
have to make some approximations.

Let us assume the simplest hypothesis: a linearized
around the nodex5xn(52xs). This means that we only
deal with first-order dynamics:

x852lx1h~ t !, ~23!

^h~ t !h~ t8!&52Rd~ t2t8!, ~24!

where we shifted the zero of the originalx variable to the
nodex→x1xs , andl5U9(xn) corresponds to the absolut
value of the eigenvalue of the node. The associated Fok
Planck equation@Eq. ~11! with F(x0)5lx0] is a typical text-
book example@9# ~Ornstein–Uhlenbeck process! and has the
exact solution
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P~x,t;x0!5
1

A2ps~ t !2
expF2

~x2x0e2lt!2

2s2~ t !
G , ~25!

s2~ t !5
R

l
~12e22lt!, ~26!

which, as could be expected, points to a Gaussian distr
tion with time-dependent mean and standard deviation
our new variables, the particles are injected atx05xs2b,
and we are interested on the transition probability as a fu
tion of time, evaluated in a point representing the barrier
the spirit of Kramers, we chose the point where the poten
reaches the height of the barrier„U(xs)…. Let us call this
point xh . Then, the probability that a particle injected inx
5x0 reaches the barrier in a timet is

Wtr~x0 ,t !5
1

A2ps~ t !2
expF2

„xh2~x01xs!e
2lt

…

2

2s2~ t !
G ,

~27!

xh52A12
Fxs

dl
, ~28!

This is the step function that we have anticipated. W
recall now that Kramers’ law assumes a stationary distri
tion and that from our numerical simulations this stationa
distribution is only reached after the maximum of the esc
time distribution~likewise, the step function!. Hence, we can
consider the transient distribution@Eq. ~27!# and the Kram-
ers’ one as two statistically independent processes. Then
will write our distribution of escape times as a product of t
step function and the exponential decay predicted by Kra
ers

Wh f~x0 ,t !5W0Wtr~x0 ,t !e2t/t0, ~29!

whereW0 is the normalization constant. The characteris
time of the long term decayt0 still remains an unknown
parameter. We have seen that within the Kramers’ appro
t05TKramers, but this no longer holds for our distributio
function. Thus, we are tempted to return to our mome
series@Eq. ~19!# in order to derive an expression fort0. The
first moment of the distribution~mean first passage time! will
serve our purpose. Again, the computation of the first m
ment of the distribution of Eq.~29! can be easily done if we
approximate the step function@Eq. ~27!# by a Heaviside
function

T15
es/t0

t0
E

s

`

te2t/t0 dt ~30!

5t01s, ~31!

where s is the mid point of the step function, andT1 is
calculated from Eq.~19!. We still need an analytic expres
sion for s. This can be derived by noting that the step fun
tion @Eq. ~27!# will reach its mid point when the exponentia
part of this function does~the prefactor relaxes rapidly to it
asymptotic value!. We calculate the mid point of the expo
u-
In
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nential in Eq.~27! taking logarithms and callingz5e2lt.
Then, we obtain the following quadratic equation forz:

@lxh
21l~b2xs!

222R ln~1/2!#z212lxh~b2xs!z

12R ln~1/2!50, ~32!

from which is now easy to calculates as a function of the
parameters of the problem.

Now, we are almost done. In order to finish with the d
scription of the escape process, we have to consider the
lution time interval (t0) from the saddle point to the absorb
ing barrier atx5b. Since the deterministic escape time fro
a fixed point goes to infinity we must take into account t
noise. We only display the result; the calculation is done
Sec. IV

t0'
1

l
lnS b2xs

A2R
D . ~33!

In Fig. 5 we compare the numerically obtained distrib
tions of escape times from the box (2b,b) for an initial
condition inx52b with the approximate analytical distribu
tion Wh f(2b,t2t0) for three different noise levels. Th
agreement is quite good. In Fig. 6 we vary the paramete
our systemF/d for a fixed noise level. Again, the derive
distribution function fits the numerically obtained data. Th
agreement holds as long as the same hypothesis of the h
friction limit of the Kramers’ rate law is maintained
Namely, the barrier height is greater than the noise level
the friction is strong enough. In addition to this, the soluti
is adequate only when the reinjection point is placed betw
2b and the node. In any other case the effects of the sa
in the short term are unavoidable. In Sec. IV we will de
with this problem.

IV. THE NOISE DRIVEN PENDULUM WITH TORQUE
IN THE CASE OF FINITE DISSIPATION

In Sec. III we analyzed the interspike time distribution f
a pendulum with infinite dissipation. Now we are about
describe how this statistic changes as we begin to lower
dissipation. In order to carry out this program, we are go
to review how the organization of the invariant manifolds
the deterministic system changes as this parameter is va
In Fig. 7, we see three phase space portraits as the dissip
is lowered. The most noticeable feature is that the sta
manifolds of the attractor and the saddle approach e
other. The distance between the manifolds can become e
smaller than the distance between the fixed points.

The dynamical consequence of this process, if the sys
is coupled to a source of noise, is that the trajectories w
find it easier to cross the threshold during the reinjection th
during their visits to the neighborhoods of the attracto
These early escapes happen more frequently as the dis
tion is lowered. Our previous study was based on the insp
tion of the trajectories that would begin in the neighborho
of the attractor~or in the phase space region even furth
away from the threshold than where the attractor was!. Now,
the issue is precisely how to describe the trajectories that
reinjected eventually close to the threshold. Before attem
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FIG. 5. Distribution of escape
times from the attractor in the
high friction limit @Eqs. ~8!,~9!#,
for initial condition x(0)52b,
parameter valuesF/d50.9, and
different noise levels:R50.03
~solid line!, R50.05~dash–dotted
line!, and R50.07 ~dashed line!.
In each case we compare the r
sult of the numerical simulations
~wiggled lines! with the approxi-
mated analytical distribution dis
played in Eq.~29! ~smooth lines!.
All parameters from Eq.~29! are
calculated analytically.
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ing a quantitative description of this process, let us note
we expect roughly two families of trajectories: those th
after a reinjection come close to the attractor, and those
took advantage of early escapes during the reinjection. Th
two will have different statistics. Clearly, the early escap
are associated with small values of interspike times. No
that although the separation between trajectories in
classes is somewhat arbitrary, the interspike time distri
tions show two clearly distinct times. As discussed in Sec
these look typically like distributions of the kind discussed
Sec. III, superimposed on narrow distributions~correspond-
ing to the early escapes!, as can be seen in Fig. 3~b!.

In order to unveil the nature of the statistics of the ea
escapes, we have to study the evolution of trajectories
jected close to a saddle, conveniently located atx50. Some
of those trajectories are deflected to negative values ox,
which we can assume will mostly end up visiting the attra
tor for a while. The others will constitute what we call ear
escapes, and we are interested in finding the time distribu
of those crossing an imaginary box with its rightmost side
at
t
at
se
s
e
o
-

I,

n-

-

n
t

x5d. These will be ruled by the following equations:

x85lx1h~ t !, ~34!

^h~ t !h~ t8!&52Rd~ t2t8!, ~35!

which are the same as Eqs.~23,24!, but now the Ornstein–
Uhlenbeck process is unstable. We took advantage of
potentialU(x), since the eigenvalues of the fixed points a
equal in absolute value. Hence, an initial delta-like distrib
tion at (x0,d) will become a Gaussian distribution with firs
and second moments increasing exponentially in time. T
would be the same as Eqs.~25,26! substituting t by 2t.
Therefore, the probability that at timet the trajectory still
remains within a semi-infinite box (2`,d) is given by

Gs~x0 ,t !5
1

A2ps2~ t !
E

2`

d
expF2

~x2x0 elt!2

2s2~ t !
Gdx,

~36!
r

f

-

FIG. 6. Distribution of escape
times from the attractor in the
high friction limit @Eqs. ~8!,~9!#,
for initial condition x(0)52b,
noise levelR50.05 and paramete
values: F/d50.88 ~solid line!,
F/d50.90~dash–dotted line!, and
F/d50.92 ~dashed line!. As in
Fig. 5 we compare the result o
the numerical simulations
~wiggled lines! with the approxi-
mated analytical distribution dis
played in Eq.~29! ~smooth lines!.



PRE 61 6497DISTRIBUTION OF INTERSPIKE TIMES IN NOISE- . . .
FIG. 7. Phase potratits of the deterministic part of the bidimensional system@Eqs.~4!,~5!# for parameter valuesF50.9, d51.0, and three
friction coefficients:~a! g52.0, ~b! g51.2, and~c! g50.9. As the friction is lowered the upper branch of the unstable manifold~solid line!
and stable manifold of the saddle~dashed line! approach each other. Box A is used to separate the spiking process~when noise is added! in
an escape problem plus a reinjection.
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s2~ t !5
R

l
~e2lt21!, ~37!

which can be properly written, after makingx85(x
2x0 elt)/A2s2(t) and D(t)5(d2x0elt)/A2s2(t) as fol-
lows:

Gs~x0 ,t !5 1
2 @11erf„D~ t !…#, ~38!

D~ t !5~d2x0 elt!F2R

l
~e2lt21!G21/2

. ~39!

As explained at the beginning of Sec. III, the distributi
of escape times is just its time derivative, that is

Ws~x0 ,t !5A l3

2pR

~d2x0 e2lt!

~e2lt21!3/2

3expF2lt2
l~d2x0 elt!2

2R~e2lt21!
G , ~40!

very similar to the expression found by Stone and Holm
when studying the statistics of a noise driven attracting
moclinic loop @8#.

We can also make use of this result to calculate the a
tional time t0 added to the distribution in the high-frictio
limit @Eq. ~33!#. The mean first passage time for an initi
condition in the saddle going towards the barrier atx5b is

t5E
0

`

erf @D~ t !#dt. ~41!

For low noise level this integral can be approximated to E
~33! as shown in@8#.

We have then obtained two separate distributions star
from local properties of the system~eigenvalues of the fixed
points! and the noise level, which are unable to be dedu
only from local properties which weight must be assigned
s
-

i-

.

g

d
o

each distribution. This has to do with the global properties
the system, more precisely with the homoclinic bifurcati
described above where the parameter controlling the diss
tion is involved. Hence, the relative weight of the distrib
tion will be the only parameter that we will fit. The fina
distribution of escape times for the one dimensional syst
now for an arbitrary reinjection pointx0, will be a weighted
sum of the two distribution deduced above

Wtot~x0 ,t !5W0@Wh f~xn ,t !1cWs~x0 ,t !#, ~42!

wherec is the relative weight of the distributions. Note th
the trajectories that lose this opportunity of an early esc
Wh f are assumed to start from the nodexn .

In Fig. 8 we show the distribution of escapes for the o
dimensional system@Eq.~8!–~9!# when the trajectories are
reinjected in three different points approaching the sad
We also display our approximated analytic solutions@Eq.
~42!# with adjusted weights@Fig. 8~c!# shown in the caption.
Again, the agreement is quite good and the functional fo
obtained easily compares with the distribution of intersp
times for the two dimensional system@see Fig. 3~b!#.

Now we arrive to the main claim of our work. We argu
that the interspike statistics of a two dimensional no
driven excitable system near a saddle-node-homoclinic bi
cation@like the pendulum with torque described by Eqs.~4!–
~6!# can be reproduced by the escape-time statistics from
metastable state with only one coordinate, endowed wit
two dimensional reinjection process. The nontrivial statist
of the interspike histogram generated by the two dimensio
system close to the homoclinic bifurcation is mimicked
the one dimensional escape process reinjecting the traje
ries close to the barrier. We claim that the escape time
tribution of the analogous one dimensional problem can
understood in terms of a superposition of the escape-t
distribution in the high-friction limitWh f(t) @Eq. ~8!# and the
distribution of early escapesWs(t) @Eq. ~40!#.

The distribution of escape timesWtot(x0 ,t) will repro-
duce the interspike histogram for the two dimensional s
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FIG. 8. Distribution of escape times from the attractor in the high friction limit@Eqs.~8!,~9!#, for F/d50.90, noise levelR50.05, and
different initial conditions:x050 ~solid line!, x050.1 ~dash–dotted line!, andx050.2 ~dashed line!. We compare the result of the numeric
simulations~wiggled lines! with the analytical distribution proposed in the text@Eq. ~42!# ~smooth lines!. This distribution is a weighted sum
of the distribution deduced in the high-friction limit@Eq. ~29!# and the distribution of early escapes@Eq. ~40!#, but the relative weight mus
be adjusted numerically:c518.33~for x050), c520.62 (x050.1), andc523.34 (x050.2).
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tem with finite dissipation as long as we can calculate:~a! the
reinjection time intervalt r and ~b! the reinjection pointx0
corresponding to the value of the dissipationg. These two
values can be obtained numerically integrating the unsta
manifold of the saddle, using the determinisic equations
we now define a narrow two dimensional box as displayed
Fig. 7~c! we can compute the deterministic reinjection tim
t r and the coordinate of the reinjection pointx0. Since the
unstable manifold of the saddle is attractive, these estim
also apply to the trajectories obtained when small noise
added. Therefore, in order to reproduce the interspike hi
gram it suffices to evaluateWtot(x0 ,t82t r), where t8
5td/g is the rescaled time. Note that our distribution fun
tion depends on a somewhat arbitrary choice of the esc
box edge~parameterb), however this effect is compensate
by the variation of the reinjection timet r . Typically, b is
placed one thermal length„lh5A2R/U9(xn)… beyond the
saddle.
le
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n

es
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In Fig. 9 we compare the interspike time distribution f
the two dimensional system, close to the homoclinic bifur
tion, with the distribution of Eq.~42!. This agreement holds
for a wide region close to the homoclinic bifurcation~when
trajectories are reinjected close the saddle!. For intermediate
g values, however, the trajectories of the two dimensio
system are reinjected between the saddle and the attra
and the one dimensional approach is less effective.
higher values ofg the trajectories are reinjected close to t
attractor and we return to the high-friction distribution@Eq.
~29!# which again gives good agreement with the numeri
data.

V. CONCLUSIONS

In @5,4# it was reported that noise driven excitable syste
could present two characteristic times. It was conjectu
that the finite dissipation in the system studied played
-

-

d

-

s

FIG. 9. Distribution of escape
times from the attractor for the bi
dimensional system@Eqs. ~4,6!
near the homoclinic bifurcation
(F50.9, d51.0, g50.9, andD
50.05) obtained from a numeri
cal integration~dashed line! and
compared with the approximate
analytical distribution function
Wtot(x0 ,td/g2t r) @see Eq.~42!#.
All parameters butx0 , t r , and c
have analytical expressions.x0

and t r can be calculated numeri
cally from the deterministic part
of the system andc is the only pa-
rameter fitted with the real distri-
bution. For these parameter value
x050.3, t r54.47, andc530.04.
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important role. In this work we analyzed this problem
detail, studying the evolution of interspike time distributio
as the dissipation was changed in a noisy pendulum w
torque. We have solved, under a reasonable linear app
mation, the high-friction limit problem which has a singl
peaked distribution of escape times. Next, we worked out
finite dissipation problem as a superposition of a two dim
sional reinjection process~which has to be solved numer
cally! and a one dimensional escape process. We found
in this case, the interspike time distribution can be expres
as the sum of two one peaked distributions: the one of
high-friction limit and a distribution of early escapes, bo
calculated from a linear stochastic process.

These results can be generalized to other systems w
present the same dynamical ingredients: a saddle-node b
cation on a limit cycle and an homoclinic bifurcation, whic
are organized around a saddle-node-homoclinic bifurca
point. The minimal dimension required to achieve this
two, therefore histograms like the one of Fig. 9 cannot
found in one dimensional excitable systems~Adler equation!
and hardly in strong dissipative excitable systems like Fi
.
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Hugh Nagumo and Hodgkin–Huxley. On the other han
there are many two~or more! dimensional unfoldings of the
saddle-node-homoclinic bifurcation~like the equations pre-
sented in@5#!, which have a similar manifold organizatio
~eventually, the two distributions derived in this work mig
have their maxima separated enough to give rise to a bi
dal interspike distributions as in@5#!.

Among the systems with the features analyzed in t
work, there are also models of excitable neurons~like the
Wilson–Cowan@12#!, which display interspike histogram
qualitatively similar to the ones presented here. This co
be especially useful because it is well known that in ma
neurons, the relevant information is believed to be coded
the inter-spike time distribution@13#.
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