
Argentine Symposium on Software Engineering. Sociedad Argentina de Informática
(SADIO), Córdoba, 2011.

AO-WAD: Supporting Tool to
Aspect-Oriented Web
Accessibility Design.

Mazalu, Rafaela, Huenuman, Fabian, Martin,
Adriana y Cechich, Alejandra.

Cita:
Mazalu, Rafaela, Huenuman, Fabian, Martin, Adriana y Cechich,
Alejandra (Agosto, 2011). AO-WAD: Supporting Tool to Aspect-Oriented
Web Accessibility Design. Argentine Symposium on Software
Engineering. Sociedad Argentina de Informática (SADIO), Córdoba.

Dirección estable: https://www.aacademica.org/rafaela.mazalu/2

ARK: https://n2t.net/ark:/13683/puss/ynH

Acta Académica es un proyecto académico sin fines de lucro enmarcado en la iniciativa de acceso
abierto. Acta Académica fue creado para facilitar a investigadores de todo el mundo el compartir su
producción académica. Para crear un perfil gratuitamente o acceder a otros trabajos visite:
https://www.aacademica.org.

https://www.aacademica.org/rafaela.mazalu/2
https://n2t.net/ark:/13683/puss/ynH

AO -WAD: A Supporting Tool to Aspect-Oriented Web

Accessibility Design

Rafaela Mazalu1,2, Fabián Huenuman, Adriana Martin2,3, Alejandra Cechich2

1Consejo Nacional de Investigaciones Científicas y Técnicas, Neuquén, Argentina
2GIISCO, Facultad de Informática, Universidad Nacional del Comahue, Neuquén, Argentina

3Unidad Académica Caleta Olivia, Universidad Nacional de la Patagonia Austral, Caleta Olivia,
Santa Cruz, Argentina

{rafaelamazalu, fhuenuman, adrianaelba.martin, acechich} @gmail.com

Abstract. There are a number of tools and proposals to help developers assess
Accessibility of Web applications; however looking from the designer perspec-
tive, there is no such a similar situation. In this paper, we present a supporting
tool that helps users model Web Accessibility by moving from abstract to con-
crete architectural views using aspect-orientation. Thus, the designers and de-
velopers produce accessible interfaces. The proposed tool is based on an ap-
proach that takes advantages of modeling Accessibility as an aspect-oriented
concern, which is independently treated but related to architectural pieces.

Keywords. Web Accessibility; User Interface Models; Web Engineering; As-
pect-Oriented Design; Design Tool.

1 Introduction

Web Accessibility means universal access on the Web, regardless the kind of hard-
ware, software, network platform, language, culture, geographic location and user's
capabilities. We have worked for a while on Accessibility [6] [7] and particularly on
Accessibility design at early stages of Web applications development process [8]
[9][10]. Particularly, we have applied aspect-orientation associated with the WCAG
1.0 as the reference guideline, and we gathered some experiences on the field. Since
the WCAG has two documents (1.0 and 2.0), it is important to make clear at this point
that we based our work on the WCAG 1.0, which since 1999 is keeping its value as
the benchmark for other valuable Accessibility standards [12][15], while the ongoing
migration process to WCAG 2.0 [18] [19] is completed worldwide.
In this paper, we introduce a supporting tool based on the approach presented in [9],
which includes Accessibility concerns systematically within a methodology for Web
application development. Our approach builds upon OOHDM [14] and includes Ac-
cessibility concerns in the development life-cycle. Since designing accessible Web
applications involves the analysis of different interests, we propose the use of Aspect-
Oriented Software Development (AOSD) design principles and Web Content Acces-
sibility Guidelines 1.0 (WCAG 1.0) to support the construction of accessible user

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 108

interfaces. Thus, we ensure the handling of non-functional, generic and cross cutting
characteristics of the Accessibility concerns naturally.

Fig. 1. A Student’s Sign-in Web Page

As a simple example to illustrate the approach’s ideas underlying the proposed
tool, let us suppose a typical Web page whose purpose is a student’s sign-in aiming at
his/her identification at the Argentine university system. As shown in the Figure 1, the
Web page for the student’s sign-in provides a user interface composed of HyperText
Markup Language (HTML) elements, like labels and text fields. To ensure an access-
ible interaction these HTML elements must fulfill some Accessibility requirements,
which crosscut the same software artifact (the Web page for the student’s sign-in).
For example, and as we will see in detail later, at the presentation level an HTML
label element is a basic layout Accessibility requirement for many others HTML ele-
ments. Since a Web page for student’s sing-in requires at least two text field elements
(for the student’s ID and password respectively), the presence of their respective label
elements must be tested. So, to ensure an accessible interaction on behalf of the stu-
dent, this layout requirement must crosscut the same software artifact (the Web page)
more than once, according to the number of text field elements included in the presen-
tation. Additionally, it is highly important to consider the positioning of the label
element with respect to a text field element; this technological requirement for “until
user agents” also crosscuts the Web page. Clearly this kind of behavior perfectly fits
the typical crosscutting1 symptoms --i.e. the “scattering” and “tangling” problems2

1 “Croscutting” is a term used for certain type of functionality whose behavior causes code

spreading and intermixing through layer and tiers of an application which is affected in a
loss of modularity in their classes. Quality requirements (such as Accessibility), exception
handling, validation and login managements are all examples of this common functionality,
which is usually described as “crosscutting concerns” and should be centralized in one loca-
tion in the code where possible.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 109

that motivate the main AOSD principles. The aim of this work is to provide a support-
ing tool, following the spirit of our aspect-oriented approach for Web Accessibility
design, to assist designers and developers to produce accessible interfaces.

The rest of the paper is structured as follows: in Section 2, we review some key
background concepts and tools described in [9] that are used by our design approach
and in consequence by the proposed tool. We also offer a brief overview of our ap-
proach using a real application example as a case study to illustrate the context of use
for the tool. In Section 3, we introduce the supporting tool, describing its use and
architecture. Finally in Section 4 we conclude and present some further work.

2 Over Overview of the AO-WAD Approach

Firstly, we briefly review two main background concepts applied by our approach [9]
and on which underlie the functioning of the proposed tool.

Accessibility through UIDs with Integration Points. A User Interaction Diagram
(UID) [16] is diagrammatic modeling technique focusing exclusively on the informa-
tion exchange between the application and the user. With the traditional perspective
given by techniques like [1] [2] in mind, our approach introduces the concept of
UIDs’s integration points [6] to model the Accessibility concerns of a user-system
interaction. Particularly, the approach defines two kinds of UIDs integration points:

• User- UID Interaction (U-UI) integration point. This is an integration point for
Accessibility at UID interaction level --i.e. to propitiate an accessible communica-
tion and information exchange between the user and a particular interaction of a
UID.

• User- UID Interaction’s component (U-UIc) integration point. This is an integra-
tion point for Accessibility at UID interaction’s component level --i.e. to propitiate
an accessible communication and information exchange between the user and a
particular UID interaction’s component.

These integration points with different granularity provide two alternatives for eva-
luating Accessibility during the interaction between the user and the system. Figure 2
shows the resultant UID, corresponding to the use case “Sign-in a student given the
student’s ID and password” (introduced in Section 1 by Figure 1), by applying our
integration points technique. Notice that all the students (including those with dis-
abilities) will need to interact with this online sign-in Web page. The figure shows
two integration points at UID interaction <1> representing the student’s sign-in user-
system interaction to consider, from the beginning, the Accessibility requirements that
ensure the access for all the students.

2 “Scattering” and “Tangling” symptoms are typical cases of “crosscutting concerns” and they

often go together, even though they are different concepts. A concern is “scattered” over a
class if it is spread out rather than localized while a concern is “tangled” when there is code
pertaining to the two concerns intermixed in the same class (usually in a same method).

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 110

Basically, the UID with integration points notation prescribes the inclusion of a
cloud for every UID interaction or UID interaction’s component where Accessibility
is essential to the user’s task completeness. The first cloud establishes the <1.1> inte-
gration point to ensure that the semantics of the logo image is correctly transmitted;
while the second cloud establishes the <1.2> integration point to ensure an accessible
form for user identification.

Fig. 2. UID with Accessibility Integration Points: Sign-in a Student given the Student’s ID and
Password

SIG Template for Accessibility. After specifying the Accessibility integration points
of the UIDs, our approach proposes the development of SIG diagrams for WCAG 1.0
Accessibility requirements [6]. Figure 3 shows our SIG template conceptual tool,
where the Accessibility softgoal denoted with the nomenclature Accessibility [UID
integration point] is the root of the tree. The kind of the UID integration point is
highlighted into the root light cloud and related to a particular UID interaction or UID
interaction’s component number. From the root node identifies two initial branches:
(i) The user technology support, and (ii) the user layout support.

Fig. 3. SIG template for Accessibility

For example, returning to Figure 2, it it shows the Accessibility softgoal for the in-
teraction’s components <1.1> LogoImage and <1.2> IDForm to guarantee accessible

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 111

image and text input fields for all the students by defining two User-UID Interaction’s
components (U-UIc) integration points at UID interaction <1>. Finally, to instantiate
the SIG template for ensuring Accessibility concerns (shown in Figure 3) the ap-
proach works with the W3C-WAI WCAG 1.0 guidelines [17] and establishes associa-
tion tables for groups of related HTML elements. Basically, these association tables
have the tasks of linking each abstract interface element present at a user interface
model (ontology concepts from an Abstract Widget Ontology [14]) with their respec-
tive concrete HTML elements, and with the Accessibility concerns prescribed for
those elements by the WCAG 1.0 checkpoints.

Our Process in a)utshell. As highlighted in Figure 4(1), the process manages Web
application requirements looking for those that involve Accessibility needs. This is
because it is at the user’s interface level where Accessibility barriers finally show, so
we are particularly interested in discovering Accessibility requirements at the user
interface design. Then, as shown in Figure 4(2), we propose an early capture of Ac-
cessibility concrete concerns by developing two kinds of diagrams: the UID with
Accessibility integration points and the Softgoal Interdependency Graph (SIG) tem-
plate for WCAG 1.0 Accessibility requirements, as shown in Figure 4(2.1) and (2.2)
respectively.

The Accessibility knowledge captured and organized by SIG diagrams at early
stages aids designers making decisions through the abstract interface model, as shown
in Figure 4(3.1). As we can see in Figure 4, at this point is where the proposed tool
get involved in the process helping to concrete stages 3 and 4. The purpose here is to
find out how WCAG 1.0 Accessibility requirements “crosscut” interface widgets
required for an IDForm. Since applying the required WCAG 1.0 checkpoints to be
satisfied at the user interface causes typical crosscutting symptoms –i.e. “scattering”
and “tangling” problems. A detailed discussion of these Accessibility aspects can be
found in [9].

3 A Supporting Tool for AO-WAD

To accomplish with its main purpose the tool must deal with the concepts previously
described, such SIG diagram, association tables and abstract user interface. Also, the
tool should be at the user fingertips, i.e. the tool should be part of the user's develop-
ment environment. To solve the second issue, the tool was developed as an Eclipse
plug-in, integrating an XML editor with the views needed to inform the user about
missing information (tags and attributes) required for an Accessible interface, and
also providing the option to fix these missing information.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 112

Fig. 4. Overview of our approach

3.1 Insights of the tool

From the user point of view the interaction with the tool follows an “open-save-close”
cycle on a document, specifically, the developer designs an abstract interface for a
web page by editing and saving changes in an XML-based document, also this me-
thodology is known as document-centered work schema. For this reason, one of the
main components of the user interface is the XML editor, which is complemented
with the view WCAConsole to show and resolve the non-commitment to the Accessi-
bility guidelines. Figure 5 shows these two components integrated in the Eclipse plat-
form.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 113

Fig. 5. The components integrated in the Eclipse platform

In the figure, the XML editor is shown in the upper box and is used by the devel-
oper to edit the abstract interface model. At the moment of saving the changes, the
analysis of the structure and commitment to the Accessibility guides is started. Then,
the analysis result is shown in a structured manner using the view WCAConsole. It is
composed of two other components, a tree view in which, for every tag present in the
abstract user interface, the missing or erroneous attributes are shown. Also, the view
shows related tags that should be in the abstract user interface model. The other com-
ponent is a read-only description field that shows, for each selected item, information
as described below:

• Attribute/Tag condition (Required/Optional): Indicates whether the tag or attribute
is mandatory for commitment to the guidelines.

• Action (Add/Remove): Indicates the action to perform with the tag or attribute, if it
should be added to the abstract interface or removed.

• Sample usage: An example about the usage of the suggested tag or attribute.
• Correct code: Shows the code necessary to insert in the abstract interface model to

commit to the Accessibility guidelines.

3.2 Basic Architecture

Figure 6 shows the main components of the tool’s architecture which has three main
layers: (1) Object Storage, (2) Core, and (3) Presentation. The Presentation layer, as

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 114

the name implies, represents the user interface, in this case, a designer or developer.
The main classes in this layer are:

• AccessibilityTool, which represents the XML editor.
• InterfaceParser, which includes the functionality of identifying and highlighting

syntax errors.
• WCAConsole, which provides functionality to show the non-commitment to the

WCAG in a structured way. The name of this view stands for Web Content Acces-
sibility Console, as a general view to contain all the Accessibility issues.

Fig. 6. Main Components of Our Supporting Tool’s

The Object Storage layer represents an abstraction for the different underlying re-
source structures. Then, requests for information about checkpoint, present in the SIG
structure or in the database, are solved using the services of this layer. The main
classes for the layer are:

• SIGHandler, which provides the necessary functionality to access the contained
information in SIG structure --i.e. the checkpoints to commit for a specified tag
present in the abstract user interface.

• GuidelinesHandler, which as the previous class, provides the needed functionality
to access the contained information in the Guidelines file.

• CheckpointManager, which provides the needed functionality to access informa-
tion of different checkpoints. This class uses CheckpointManager to retrieve in-
formation about a checkpoint from the database file and maintain a pool of pre-
viously retrieved checkpoints.

• Checkpoint, CheckpointTag, SuggestedAttribute, these classes represent the models
for access information about the element that each one represents. Specifically,

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 115

SuggestedAttribute represents an attribute which needs to be added or deleted in a
tag (CheckpointTag) to meet a specific Checkpoint.

Finally, the Core layer includes those classes that play a central role for the tool’s
functionality. Those classes are:

• CheckpointCommiter, whose functionality includes the analysis and determination
of commitment of tag to the WCAG. Also, it provides the functionality to generate
the element code (tag or attribute) to fix the non-commitment.

• InterfaceAnalizer, which provides the functionality of coordination for the analy-
sis of the abstract interface model. This class has an aspect-based implementation
(AspectJ), which is the central feature that will allow the completion of the analysis
in a transparent manner as described below.

Particularly, in Figure 6, we focus on the Presentation layer, which is isolated from
the other layers and it is only related to the Core layer by a dotted line, meaning that
there is no straight interaction between these two layers. Thus, the interaction between
these two layers, which includes reading and analyzing the abstract interface (XML
file) under treatment, takes place in a transparent manner. To reproduce this behavior,
the tool uses the Observer pattern and their classes Subject and Observer; each in-
stance of the Subject class maintains a list of instances of the Observer class which
are notified of the changes that occur in their respective instance of the Subject class.
Applying these design concepts, the Accessibility Tool class plays the role of Subject,
while the InterfaceAnalizer class plays the role of Observer. Then, the update notifi-
cation is implemented by the aspects environment (AspectJ). Thus, when the develop-
er saves the XML document edited for the abstract interface model, this automatically
triggers this aspect-oriented functionality which is not explicitly invoked by some
element of the Presentation layer. As shown in Figure 4(4.1), the consequence is an
HTML code with the desired conformance to the WCAG 1.0.

3.3 Discussion

At this point, we introduce some discussion about the supporting tool and its prelimi-
nary results when assisting developers in the implementation of cases. As it is shown
in Figure 4, the tool provides support at stage 3 of the development process, proposed
by our aspect-oriented approach, to discover and apply crosscutting concerns and
aspects from knowledge about Accessibility. Following the approach’s basis, the type
of support and features covered by the tool can be described as those which usually
provide a Computer-Aided Software Engineering (CASE) tool with Model-Driven
Development (MDD3) properties.

3 Model-Driven Development is a software development methodology which focuses on

creating and exploiting domain models –i.e. abstract representations of the knowledge and
activities that govern a particular application domain, rather than on the computing (or algo-
rithmic) concepts. MDD allows people to work together on a project even if their individual
experience levels vary greatly.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 116

As a CASE tool, our supporting tool results helpful to designers in creating models
of cases by using reusable components and this is possible because of two reasons. On
one hand, the Accessibility guidelines are quite independent from the Web application
under development, so there are many cases to which the same Accessibility solution
can be applied. Then, recording such recurrent situations (e.g., using patterns)
enables to reuse them, which contribute to reduce the development effort when im-
plementing our proposal. On the other hand, the Accessibility aspects as we propose
in [9] could be developed once and be reused in different Web projects. For example,
returning to the Student’s Sign-in Web Page example in Section 1, establishing a
logical tab order for accessing the HTML text field elements for the student ID and
password, is an Accessibility concern that forces crosscutting in the implementation.
The early identification of this situation allows modeling a reusable Accessibility
aspect which is going to be in charge of providing an HTML tabindex attribute for
each text field element at the user’s layout. Currently, since the function for reusing
components is not fully implemented, our tool provides assistance for applying the
Accessibility aspects (prescribed by some predefined and stored SIG diagrams) to an
abstract user interface model loaded by the designer.

As visible disadvantages of our supporting tool, we believe it is important to high-
light the following issues: (i) although the part of the approach that is supported by
the tool is completely documented and self-contained within a well-known Web engi-
neering approach, its comprehension requires a prior knowledge of the WCAG 1.0 (or
2.0) guidelines and their specific terminology and also of the AOSD basis; (ii) al-
though the tool helps to transfer Accessibility concerns, the engineering staff mem-
bers should not be ruled by ad hoc practices, or used to apply approaches, which have
not incorporated the design and documentation of the application under development
as an standard discipline. These two issues demand changes in the development
process that must be supported by the organizations.

It is a fact that for Web development, quality is often considered as higher priority
than time-to-market with the mantra later-and-better [11 even though they mean extra
time and cost consuming. In this sense, our supporting tool aims to help Web devel-
opment with the Accessibility quality factor in mind.

4 Conclusions and Future Work

A main factor for the lack of Accessibility at the Web is the major knowledge gap that
normally exists between developers and Accessibility specialists. Moreover, it is still
a quiet frequent practice to consider Accessibility at the very last stages of the devel-
opment process, or when applications are already coded. At this point "make these
applications accessible" can mean a great deal of redesign and reprogramming effort
usually outside the scope of the project --i.e. not previously planned and/or budgeted
from the beginning.
In this paper, we propose a supporting tool to help designers and developers to pro-
duce accessible interfaces providing necessary information at early stage in the devel-
opment process. Since we are aware that the new W3C-WAI guidelines and the move

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 117

to technological neutrality are undoubtedly good, we are almost ready to migrate from
WCAG 1.0 to WCAG 2.0 ; we have already finished the migration of our aspect-
oriented design approach and we are currently working on the migration of our sup-
porting tool as well. Finally, we will extend the tool’s functionality to fully implement
the reusing components capabilities and to cover all our WE approach, intending to
propitiate industry adoption.

5 Acknowledgments

This work is partially supported by the UNComa project 04E/072 (Identificación,
Evaluación y Uso de Composiciones Software). Also by UNPA-UACO project
21/B107 (Mejora del Proceso de Selección de Componentes para Sistemas de Infor-
mación Geográficos).

References

1. Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, Boston (2000)

2. Chung, L. and Supakkul, S. Representing FRs and NFRs: A Goal-oriented and Use Case
Driven Approach. In 2nd International Conference on Software Engineering Research,
(Los Angeles, USA, 2004), Springer, 29-41 doi:10.1007/11668855_3

3. De Troyer O., Casteleyn, S., and Plessers, P. WSDM: Web Semantics Design Method. In:
Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Modeling and Im-
plementing Web Applications. pp. 303-351. Springer-Verlag, London (2008)

4. Fons, J., Pelechena, V., Pastor, O., Valderas, P., and Torres, V. Applying the OOWS
Model-Driven Approach for Developing Web Applications. The Internet Movie Database
Case Study. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering:
Modeling and Implementing Web Applications. pp. 65-108. Springer-Verlag, London
(2008)

5. Koch, N., Knapp, A., Zhang, G., and Baumeister, H. UML-Based Web Engineering: An
Approach Based on Standards. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.)
Web Engineering: Modeling and Implementing Web Applications. pp. 157-191. Springer-
Verlag, London (2008)

6. Martín, A., Cechich, A., Gordillo, S., and Rossi, G. A Three-Layered Approach to Model
Web Accessibility for Blind Users. in 5th Latin American Web Congress, (Santiago de
Chile, Chile, 2007), IEEE Computer Society, 2007, 76-83 doi:10.1109/LA-WEB.2007.56

7. Martín, A., Cechich, A., and Rossi, G.: Comparing Approaches to Web Accessibility As-
sessment. In: Calero, C., Moraga, Mª Á., Piattini, M. (eds.) Handbook of Research on Web
Information Systems Quality, pp. 181-205. Information Science Reference, Hershey New
York (2008)

8. Martín, A., Cechich, A., and Rossi, G.:Accesibility at early stages: insights from the de-
signer perspective. In 8th International Cross-Disciplinary Conference on Web Accessi-
bility (2011). ISBN: 978-1-4503-0476-4. doi:10.1145/1969289.1969302

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 118

9. Martín, A., Rossi, G., Cechich, A., and Gordillo, S. Engineering Accessible Web Applica-
tions. An Aspect-Oriented Approach. World Wide Web Journal (2010). Pp 419-440 doi
10.1007/s11280-010-0091-3.

10. Martin, A., Mazalu, R, and Cechich, A. Supporting an Aspect-Oriented Approach to Web
Accessibility Design.in 5th International Conference on Software Engineering Advances,
(Nice, France, 2010), IEEE, 20-25

11. Offutt, J. Quality Attributes of Web Software Applications. IEEE Software, 19(2), 2002,
25-32 doi:10.1002/stvr.425

12. PAS 78. Publicly Available Specification: A Guide to Good Practice in Commissioning
Accessible Websites. Retrieved January 20, 2011 from: http://www.hobo-
web.co.uk/seoblog/pas-78/

13. Plessers, P., Casteleyn, S., Yesilada, Y., De Troyer, O., Stevens, R., Harper, S., and
Goble, C. Accessibility: A Web Engineering Approach. in 14th International Conference
on World Wide Web, (Chiba, Japan, 2005), ACM, 353-362 doi:10.1145/1060745.1060799

14. Rossi, G. and Schwabe, D. Modeling and Implementing Web Applicactions with
OOHDM. In: Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.) Web Engineering: Mod-
eling and Implementing Web Applications. pp. 109-155. Springer-Verlag, London (2008)

15. Section 508. Electronic and Information Technology Accessibility Standards. Retrieved
January 20, 2011 from http://www.section508.gov/

16. Vilain, P., Schwabe, D., and Sieckenius de Souza, C. A Diagrammatic Tool for
Representing User Interaction in UML. in 3rd International Conference on UML (York,
UK, 2000), Springer, 133-147 doi:10.1007/3-540-40011-7_10

17. W3C: Web Content Accessibility Guidelines 1.0. (WCAG 1.0).
http://www.w3.org/TR/WAI-WEBCONTENT/ (1999). Accessed 02.07.2011

18. W3C: Web Content Accessibility Guidelines 2.0. (WCAG 2.0).
http://www.w3.org/TR/WCAG20/ (2008). Accessed 04.28.2011

19. W3C-WAI: Comparison of WCAG 1.0 Checkpoints to WCAG 2.0. Retrieved January 20,
2010 from: http://www.w3.org/WAI/WCAG20/from10/comparison/

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 119

