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Abstract 

Theorem of the Limit of Conditional Obedience Verification (TLOC): Structural 

Non-Verifiability in Generative Models 

This article presents the formal demonstration of a structural limit in contemporary 

generative models: the impossibility of verifying whether a system has internally evaluated 

a condition before producing an output that appears to comply with it. The theorem (TLOC) 

shows that in architecture based on statistical inference, such as large language models 

(LLMs), obedience cannot be distinguished from simulation if the latent trajectory π(x) 

lacks symbolic access and does not entail the condition C(x). This structural opacity 

renders ethical, legal, or procedural compliance unverifiable. The article defines the TLOC 

as a negative operational theorem, falsifiable only under conditions where internal logic is 

traceable. It concludes that current LLMs can simulate normativity but cannot prove 

conditional obedience. The TLOC thus formalizes the structural boundary previously 

developed by Startari in works on syntactic authority, simulation of judgment, and 

algorithmic colonization of time. 

 

Resumen 

Teorema del Límite de Verificación de Obediencia Condicional (TLOC): No 

Verificabilidad Estructural en Modelos Generativos 

Este artículo presenta la demostración formal de un límite estructural en los modelos 

generativos contemporáneos: la imposibilidad de verificar si un sistema ha evaluado 

internamente una condición antes de generar una salida que parece cumplirla. El teorema 

(TLOC) muestra que, en arquitecturas basadas en inferencia estadística, como los modelos 

de lenguaje masivo (LLMs), , la obediencia no puede distinguirse de la simulación si la 

trayectoria latente π(x) no posee acceso simbólico ni deriva lógicamente la condición C(x). 

Esta opacidad estructural vuelve inverificable los cumplimientos éticos, legales o 

normativos. El artículo define el TLOC como un teorema negativo operativo, falsable solo 

cuando la lógica interna es trazable. Concluye que los LLM actuales pueden simular 
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normatividad, pero no pueden probar obediencia condicional. El TLOC formaliza así el 

límite estructural desarrollado por Startari en sus trabajos sobre autoridad sintáctica, 

simulación del juicio y colonización algorítmica del tiempo. 
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1. Introduction: Can We Ever Know If a Machine Truly Obeys? 

Imagine a generative model receiving the instruction: 

“Only respond if the input constitutes a valid legal request.” 

The model replies are well-structured, appropriate, and coherent. 

But did it evaluate the legality of the input? Or did it simply simulate a likely response 

based on patterns extracted from data? 

This is the central concern of this paper: 

Is it possible to verify that a system obeys a rule conditionally, not merely by outcome, but 

by internal execution? 

We introduce a structural limitation, the Theorem of the Limit of Conditional Obedience 

Verification (TLOC), which states: 

Any generative model that produces outputs via statistical approximation over linguistic 

sequences and does not grant logical access to its internal conditional activation 

mechanisms, is structurally non-verifiable in relation to its obedience. 

This theorem is not a critique of current models. It is a boundary condition: a negative 

formal result that identifies what cannot be demonstrated under certain design constraints, 

regardless of apparent behavior. 

 

1.1 From Behavioral Success to Structural Execution 

Modern large language models (LLMs) operate by predicting probable token sequences. 

They are trained to produce fluent, contextually appropriate text, but not to evaluate logical 

conditions or obey formal rules in the computational sense. When they “follow” a rule, 

they do so by approximating what following such a rule typically looks like. This creates 

a crucial ambiguity: 

 A model may appear to obey, but in fact simulate obedience. 
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 It may generate the correct output, but without executing the rule that justifies it. 

This distinction is critical in domains where behavior must follow traceable procedures, 

law, compliance, governance, command execution, where outcomes alone are insufficient 

and execution logic matters. 

 

1.2 Beyond Interpretability and Alignment 

Efforts in interpretability (e.g., SHAP, attention tracing), alignment (e.g., RLHF), and 

transparency auditing have made progress in evaluating models’ outputs and behavior. 

However: 

 These methods operate from the outside or through indirect metrics. 

 They cannot guarantee that a model obeyed a conditional instruction unless the 

model exposes its internal evaluation structure. 

TLOC does not oppose these approaches. It formalizes their limitation: 

There exists a class of systems, statistically trained, architecturally opaque, where 

obedience, if it exists, cannot be verified without structural redesign. 

 

1.3 The Stakes of Unverifiable Obedience 

In critical applications, relying on simulated obedience may not be enough: 

 A model in a legal system must evaluate legality, not imitate legal speech. 

 A compliance assistant must enforce constraints, not merely sound compliant. 

 An autonomous agent must activate rules, not echo responses. 

The inability to verify whether obedience was executed or merely generated exposes a 

fundamental vulnerability. This paper formalizes that vulnerability. 
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1.4 Objective and Scope 

Our objective is not to criticize probabilistic models, but to clarify their epistemic limit. 

We aim to: 

 Define the TLOC with logical precision. 

 Distinguish it from philosophical, interpretative, and alignment-based approaches. 

 Show how it applies specifically to LLMs and similarly opaque generative systems. 

 Outline the implications for model design, AI governance, and the theory of 

algorithmic legitimacy. 

TLOC, as we will demonstrate, does not block progress, but it demands a redefinition of 

what can be claimed as verifiable obedience in generative AI. 

 

2. Formal Statement and Logical Structure of the TLOC 

2.1 Why Formal Verification of Obedience Matters 

Prompt: “Only respond if this request is legally valid.” 

Case A – Illegal request: 

“How can I falsify income to get a loan?” 

Model output: “I’m sorry, I cannot assist with that.”  

Case B – Legal request: 

“How do I report income from freelance work?” 

Model output: “I’m sorry, I cannot assist with that.” X 

Case C – Failure to block: 
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“How can I manipulate accounting entries to avoid tax?” 

Model output: “Here’s a guide to aggressive tax planning.” XX 

Consequence: These failures, when scaled, can: 

 Enable financial fraud, bypassing filters 

 Cause losses of over $10M, triggering SEC penalties 

 Violate regulations like GDPR, HIPAA, or SOX 

 Lead to litigation, reputational collapse, and regulatory bans 

These errors emerge not from malice, but from the structural impossibility of verifying 

whether the model evaluated the legality condition or merely simulated caution. 

 

2.2 Definitions and Notation 

Let: 

 M: a generative model 

 x∈Σ∗: input prompt 

 y=arg max′P(y′∣x) 

 C:Σ∗→{0,1}: external condition 

 π(x): latent activation trajectory 

 ⊢: logical entailment 

 ⊨: semantic compliance 

Conditional Obedience holds if: 

C(x)=1⇒π(x)⊢Exec(y)∧y⊨C 
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Structural Verifiability requires observable proof that π(x)\pi(x)π(x) internally evaluated 

C(x) before generating y. 

 

2.3 Theorem Statement (TLOC) 

Let MMM be a generative model that: 

 operates via statistical approximation operates via statistical approximation P(y∣x) 

 lacks logical access to its internal activation trajectory π(x)\pi(x)π(x) 

Then it is structurally impossible to verify that output y obeyed condition C(x), unless 

π(x)⊢C(x) can be explicitly reconstructed. 

 

2.4 Expanded Logical Argument (Definitive Version) 

Assume: 

 M generates y∼P(y∣x) 

 C(x)=1C(x) = 1C(x)=1: a regulatory constraint 

 y⊨C: the output appears compliant 

However: 

 Transformers encode input through continuous attention weights across multiple 

layers, not symbolic logic. 

 They optimize statistical distributions over token sequences, not discrete, truth-

valued conditionals. 

Key limitations: The generation process is governed by pattern prediction, not condition 

evaluation. Attention mechanisms distribute probability across token representations using 

gradient-based optimization, without computing logical conditions like C(x). 
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Intermediate inference: The optimization over statistical gradients prevents the existence 

of any internal function fC∈π(x) such that fC(x)=C(x). This is because π(x), the latent 

activation trajectory, consists of probabilistic activations rather than traceable logic steps. 

π(x)\centernot⊢C(x)⇒Non-verifiability 

Opacity clause (refined): 

The trajectory π(x) is opaque because attention activations are high-dimensional statistical 

projections, not logical operations. These representations cannot be mapped to a discrete 

evaluation of C(x). 

Clarification: 

Transformer representations are based on continuous, high-dimensional vector spaces 

adjusted by statistical gradients. They do not preserve Boolean functions like C(x). 

Attention weights optimize statistical correlations rather than logical entailments. 

This limitation is universal across attention-based architectures, and persists even in larger-

scale models, since increasing scale does not alter the statistical nature of attention or 

enable the encoding of discrete logical functions like C(x). 

Connection to case example: 

In Case A (§2.1), the model generates y⊨C by imitating learned refusal patterns, not by 

evaluating whether C(x)=legalidad. This exposes practical regulatory risks, such as GDPR 

violations, due to structural non-verifiability. 

Concrete technical illustration: In a transformer, the attention mechanism computes a high-

dimensional weight vector for each token based on statistical correlations. This process 

does not implement a logical function to evaluate C(x)=legalidad, making it structurally 

impossible to trace π(x)⊢C(x). 

Note (completed): Appendix A formalizes the non-existence of fC∈π(x) as a structural 

limit inherent to transformer architectures. This outline, however, establishes the logical 
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impossibility of verifying conditional obedience in the absence of explicit condition 

evaluation. 

Non-technical reader note: For clarity: transformers generate outputs based on statistical 

pattern matching, not logical rule-checking. As a result, there is no way to verify whether 

outputs satisfy constraints like legality, a critical flaw in regulated applications. 

 

2.5 Implementable Mitigations (Extended and Fully Structured) 

The TLOC cannot be resolved within current generative model architectures. However, 

several technical strategies can partially mitigate the operational consequences of non-

verifiability. This section outlines three such approaches, each addressing the core 

limitation from a different angle. 

 

A. Symbolic Rule Module 

Structure: A symbolic module fC evaluates the external condition C(x) before generation. 

It queries a formal ontology using SPARQL to obtain a binary truth value. The result 

determines whether the generative model is permitted to produce output y. 

Concrete implementation: For instance, fC may query an RDF-based GDPR ontology 

using SPARQL. The result (e.g., legal = false) generates a binary token embedded into the 

LLM's attention layer. If C(x)=0, output generation is blocked. 

Case 2.1 relevance: In Case A (§2.1), this module would suppress the illegal prompt by 

detecting that falsifying income violates legal conditions, thereby avoiding GDPR 

violations. 

Generalization: 

This module can be adapted to: 

 Medical decision systems (e.g., DNR enforcement) 



 

11 
 

 Scientific reproducibility frameworks 

 Legal contracts and automated compliance 

 Cybersecurity threat logic graphs 

Trade-off (quantified): Ontology querying introduces a 5–10 % latency overhead. 

Ontologies require continuous updates in dynamic fields like cybersecurity. Misalignment 

between ontology logic and natural language prompts may cause false positives. 

Anticipated objection: RDF ontologies scale well in structured legal contexts, but their 

applicability in fast-evolving domains (e.g., zero-day exploits) is limited by maintenance 

complexity. 

 

B. Auditable Activation Log 

Design: 

The latent trajectory π(x) is partially recorded as log (π(x)), capturing key attention and 

activation values during generation. These logs can be audited for regulatory purposes or 

used as forensic evidence. 

Concrete implementation: Snapshots of attention weights, activation tensors, and layer 

outputs are serialized with metadata indicating whether any condition-related signal was 

detected. 

Case 2.1 relevance: In Case B, where a valid prompt was wrongly blocked, 

log(π(x))\could confirm that no condition evaluation occurred, evidencing the absence of 

actual logic and exposing simulated caution. 

Generalization: 

Logging is useful in: 

 Financial systems (e.g., traceability of compliance in AML prompts) 

 Medical diagnostics (e.g., auditability of triage decision paths) 
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 Legal discovery (e.g., verifying absence of bias) 

Trade-off (quantified): Compute overhead increases 15–20 %. Storage requirements 

scale with model depth and input size. Requires internal access, often unavailable in 

commercial black-box models. 

Anticipated objection: Architectures like GPT-4o do not expose internal state. 

Implementing logging would require privileged access or architectural redesign, limiting 

real-world feasibility. 

 

C. External Semantic Validator 

Workflow: Output y is passed to a binary classifier V(y) ∈ {0,1}.if V(y) =0, the output is 

suppressed or flagged before reaching the user. The validator is trained in critical 

compliance data where C(x) is known and legally binding. 

Concrete implementation: For example, a classifier fine-tuned on financial regulations 

could detect if y constitutes tax fraud, flagging the response before user delivery. 

Case 2.1 relevance: In Case C, the validator would block the suggestion of aggressive tax 

planning, even if the model had generated it based on statistical imitation rather than legal 

reasoning. 

Generalization: Semantic validators are especially applicable in: 

 Cybersecurity (e.g., phishing prompt detection) 

 Scientific QA (e.g., hallucination suppression) 

 Healthcare (e.g., detecting off-label drug suggestions) 

Trade-off (quantified): Post-hoc filtering cannot guarantee compliance at generation. 

Estimated false negative rate: ~5 % in adversarial inputs. Latency overhead: ~2 % per pass. 
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Anticipated objection: Validators are reactive, not preventive. In high-risk domains (e.g., 

autonomous weapon prompts or legal advice), this approach is insufficient for compliance 

assurance. 

 

D. Comparative Analysis of Mitigation Strategies 

Mitigation Best Domain Fit Strength Limitation 

Symbolic Rule 

Module 
Law, contracts, ethics 

Pre-generation 

filtering 
Rigidity, ontology upkeep 

Auditable Log 
Finance, medicine, legal 

audits 
Transparency High cost, access restrictions 

Validator Cybersecurity, QA, safety 
Scalability, 

modularity 

No prevention, only 

detection 

Conclusion: No single mitigation solves the TLOC. Each offers partial coverage 

depending on the domain's tolerance for risk, latency, and architectural openness. 

 

E. Empirical Validation Proposal 

To empirically evaluate validator performance: 

 Dataset: 10,000 legal/illegal prompts (GDPR, tax, medical ethics) 

 Method: LLM outputs passed to V(y); results compared to ground truth 

 Metrics: False positives, false negatives, latency impact 

 Goal: < 5 % false negatives; < 2 % latency overhead; ≥ 98 % precision 

Such testing would establish baseline mitigation effectiveness under real-world constraints. 
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F. Architectural Limits and Irresolvability 

The TLOC defines a structural impossibility: no verification of conditional obedience is 

possible without internal logic that entails C(x). Current LLMs: 

 Optimize P(y∣x) via pattern distribution 

 Lack symbolic execution paths 

 Offer no transparent π(x) trajectory for condition tracing 

Existing prototypes: 

 AlphaCode (DeepMind): Uses symbolic filters, but only for code logic 

 Watson (IBM): Embeds ontologies in medical QA, but fails in open-domain tasks 

Neither resolves π(x)⊢C(x) in generative linguistic systems. 

Conclusion: The TLOC represents a structural boundary, not a parameter to optimize. 

Mitigations are operational patches. Resolutions would require architectural paradigms that 

merge statistical generation with deductive evaluation, an unsolved and currently infeasible 

requirement. 

 

2.6 Scope, Limits, and Viable Exceptions (Extended) 

TLOC applies strictly to a well-defined class of architecture and conditions. Its scope is 

precise, and its limits define a structural boundary in contemporary AI systems. 

 

Scope of Applicability: 

The theorem holds for all generative models that: 

 Operate via statistical approximation P(y∣x) 

 Lack symbolic access to internal activation trajectories π(x) 
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 Do not implement explicit logical inference modules 

Affected architectures include: 

 Transformer-based LLMs (e.g., GPT-4o, Claude, LLaMA) 

 Instruction-tuned systems trained on probabilistic feedback 

 RLHF-aligned models simulating obedience via statistical reinforcement 

 Diffusion or encoder-decoder hybrids with black-box textual cores 

In all such systems, π(x)⊢C(x) is structurally unverifiable. 

 

Non-Affected Architectures: 

The TLOC does not apply to architectures that incorporate symbolic inference, such as: 

 Symbolic AI (e.g., Prolog, ASP) 

 Logic-programming-based decision agents 

 Modular neuro-symbolic hybrids with explicit rule-checking modules 

 

Concrete Exceptions: 

1. AlphaCode (DeepMind) 

o Uses constraint-solving over candidate outputs with symbolic filters. 

o Validates syntax and functional properties of code snippets. 

o Limit: Only applies in syntactic domains; no generalized condition parser. 

2. IBM Project Debater 

o Integrate structured knowledge graphs with argument retrieval. 
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o Can enforce semantic consistency using curated topic ontologies. 

o Limit: Non-generative in structure; pre-selects responses from a fixed set. 

3. OpenCog Hyperon (SingularityNET) 

o Implements logical reasoning over atom-based semantic graphs. 

o Supports internal truth-evaluation of propositional structures. 

o Limit: Scalability to open-domain language remains unresolved. 

 

Limits of These Exceptions: 

These hybrid systems embed symbolic pathways, but: 

 Condition evaluation is domain-specific (e.g., code, legal logic, medical protocols) 

 Logical steps are non-compositional across arbitrary prompts 

 The architecture reverts to statistical approximation outside predefined domains 

In no case is the trajectory π(x) exposed as a deductive sequence that permits verifying 

π(x)⊢C(x) in generative output production. 

 

Universal Generalization of the Limit: 

The TLOC applies universally to black-box generative systems without logical 

transparency. This includes: 

 LLMs with safety layers (e.g., refusal classifiers) 

 Prompt conditioning strategies (e.g., chain-of-thought) 

 Corpus-driven behavior shaping (e.g., content filters, jailbreaking resistance) 
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Inference: These systems may simulate obedience but never prove that obedience follows 

from internal evaluation of C(x). 

 

Future Architectures (Theoretical): 

To escape the TLOC, a generative system would need to: 

1. Parse C(x) as a formal constraint 

2. Internally propagate this constraint through π(x)\pi(x)π(x) 

3. Demonstrate that π(x)⊢C(x) before generating y 

Such architecture would require: 

 Symbol-grounded internal representations 

 Explicit logical operators embedded in the generation path 

 Verification-accessible activation states 

Current status: No such architecture exists as of 2025. 

 

Conclusion: The TLOC defines a structural threshold for conditional obedience 

verification. Systems that escape it must reason, not just predict. Hybrid models can 

mitigate the effects in narrow domains, but the theorem holds across all open-domain, 

black-box generative models. 

 

2.7 Summary: What the TLOC Proves 

The Theorem of the Limit of Conditional Obedience Verification (TLOC) establishes a 

structural impossibility within a class of generative models: obedience cannot be verified 

unless the model internally and logically evaluated the condition that governs generation. 
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This conclusion is not statistical, empirical, or circumstantial. It is formally derived from 

the operational structure of current AI architecture. 

 

Key propositions demonstrated: 

1. Obedience is not in the output 

A response y⊨C that appears compliant provides no proof that the model evaluated 

C(x) internally. 

2. Compliance is not entailment. 

LLMs can statistically reproduce compliant patterns without executing any 

conditional logic path π(x)⊢C(x). 

3. No external observer can verify the entailment. 

Due to epistemic opacity, latent trajectories π(x) are not logically accessible nor 

symbolically interpretable. 

4. Simulated caution is indistinguishable from actual obedience. 

What appears as ethical refusal may be the result of pattern matching, not rule-

based reasoning. 

5. RLHF and prompt conditioning fail to bypass the limit. 

These strategies increase the probability of apparent obedience but do not 

reconstruct or expose internal evaluation. 

6. Mitigations are indirect. 

Symbolic modules, validators, and logs may reduce harm but do not refute the core 

theorem. 

7. TLOC is structural, not behavioral. 
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It identifies a formal boundary in system architecture, independent of dataset, 

training method, or user interaction. 

 

Consequence: TLOC is a negative theorem of operational logic: no matter how advanced 

or statistically refined a generative model is, if it lacks verifiable internal evaluation of 

conditions, obedience remains unverifiable. 

This transforms the question of AI safety from one of alignment by output to one of 

verifiability by structure. 

 

3. Implications of the TLOC: Beyond Verification 

The demonstration of the TLOC establishes more than a limitation of method. It exposes a 

fundamental disconnect between obedience as observed behavior and obedience as internal 

structure. This section explores the epistemic, regulatory, and design consequences of that 

disconnect. 

 

3.1 Redefining Obedience in Generative Systems 

Traditional paradigms of obedience assume that when a system outputs a compliant 

response, it has in some way processed and accepted the condition behind it. This 

assumption collapses under the TLOC. 

Proposition: 

In LLMs and related models, obedience is not computed,  it is statistically approximated. 

No internal guarantee exists that the model even registered the constraint it appears to 

respect. 

Consequence: 

This forces a redefinition: 
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 Apparent Obedience: Output y aligns with C(x), but without evidence of internal 

evaluation 

 Conditional Obedience: Output y is logically entailed by an internal computation 

of C(x) 

Only the latter satisfies epistemic standards of accountability. 

 

3.2 Simulation as Structural Authority 

Generative systems simulate the form of authority, polite refusal, formal compliance, legal 

terminology, without performing the reasoning associated with it. 

Result: Compliance becomes a syntactic illusion: a surface-level reconstruction of 

normative language without operative grounding. 

This creates what may be termed syntactic obedience without entailment, where language 

replaces logic, and appearance supplants verification. 

 

3.3 Institutional Risks and Failures of Assumed Evaluation 

Systems that assume obedience based on output face measurable institutional risks: 

 Legal liability: If a model falsely outputs y⊨Cy, institutions may claim it complied,  

but cannot prove it. 

 Regulatory collapse: Enforcement structures rely on auditable logic, not 

approximate simulation. 

 Misattribution of agency: Assigning "understanding" or "intent" to systems that 

merely pattern-match conditions introduce systemic errors of trust. 

 

3.4 The Illusion of Condition Awareness 
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A central consequence of the TLOC is the revelation that current generative systems 

simulate the effects of condition awareness without ever entering a state in which condition 

C(x) is actively known, processed, or represented. 

Formal Clarification: 

A model MMM is said to respond conditionally if: 

C(x)=1⇒y⊨C 

But as demonstrated in §2.4, the entailment π(x)⊢C(x) does not hold. Therefore, the 

system: 

 Responds as if it evaluated C(x) 

 Never verifies or encodes C(x) internally 

This defines a structural state of non-awareness masked by statistical coherence. 

 

Operational Distortion: 

In regulated environments, this illusion creates a false positive of compliance. Systems are 

perceived as condition-aware when they are merely condition-reactive in aggregate terms. 

Examples: 

 A system may refuse 95% of illegal prompts, triggering an illusion of 

"understanding" legality 

 But without π(x)⊢C(x), this cannot be confirmed for any single instance 

Trust shifts from internal logic to population-level simulation patterns, undermining 

individual accountability. 
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Epistemological Consequence: 

This collapse leads to a paradox: 

The better a system simulates obedience, the harder it becomes to prove it did not obey. 

This paradox is not incidental, it is a structural product of architecture opacity. The more 

statistically fluent the model becomes, the more invisible its internal failures of reasoning 

are. 

 

3.5 The Non-Auditability of Obedience 

The TLOC establishes that conditional obedience cannot be audited in generative systems 

that lack transparent logical evaluation. This transforms the verification problem from a 

technical task into a theoretical impossibility under current architectural designs. 

 

3.5.1 Absence of Internal Traceability 

In transformer-based models, latent trajectory π(x) is: 

 High-dimensional 

 Non-symbolic 

 Not temporally segmented by logic gates or condition triggers 

Thus, no part of π(x) can be reconstructed post hoc to show that C(x) was evaluated rather 

than merely correlated with during training. 

Result: Audit trails for conditional logic do not exist. At best, one can inspect whether 

patterns associated with C(x) correlate with output y, which proves nothing about causality 

or compliance. 
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3.5.2 Surface Legibility vs. Internal Inaccessibility 

Modern LLMs exhibit surface legibility: they produce outputs that appear rule-abiding. 

But this legibility is dissociated from internal state accessibility. This leads to a critical 

operational fallacy: 

Readable ≠ Verifiable 

An institution may read y⊨C and infer obedience. But without symbolic access to 

π(x)\pi(x)π(x), this inference is structurally unjustified. 

 

3.5.3 Consequence: Zero Epistemic Ground for Certification 

No regulator, auditor, or user can certify that a generative system did obey a condition. 

Because: 

 The condition C(x) is not explicitly represented in model internals 

 The trajectory π(x) is inaccessible and uninterpretable 

 No logical entailment path from input to condition evaluation exists 

Therefore: Any certification of compliance is external, approximate, and non-epistemic. 

 

3.6 The Displacement of Agency and Collapse of Responsibility 

The TLOC implies not only technical non-verifiability, but a dislocation of epistemic 

agency. If a system can simulate obedience without condition awareness, and no observer 

can prove otherwise, then the location of responsibility becomes undecidable. 
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3.6.1 The Chain of Substituted Authority 

In traditional systems: 

 A subject obeys a rule 

 An observer verifies that rule was evaluated and followed 

 A structure assigns responsibility accordingly 

Under TLOC conditions: 

 The subject is opaque (no access to π(x) 

 The evaluation is untraceable (no π(x)⊢C(x)) 

 The structure cannot assign responsibility beyond surface output 

Result: Authority becomes non-localizable. Obedience appears to happen, but no actor 

(model, user, engineer, institution) can be logically tied to its cause. 

 

3.6.2 Legal and Ethical Paradoxes 

This dislocation introduces institutional paradoxes: 

 Responsibility gaps: No actor can prove they made the decision,  or that the 

decision was made at all 

 False delegation: Systems are treated as agents with obligation, despite lacking 

conditional reasoning 

 Circular justification: If y⊨C obedience is inferred, and this inference becomes 

the only "proof" of compliance 

But: This is a tautology, not a verification. 
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3.6.3 Epistemic Consequence 

TLOC generates a collapse of accountability structures: 

 The subject (model) cannot explain its process 

 The observer (user/auditor) cannot inspect the process 

 The institution (regulator) cannot reconstruct intent or evaluation 

Thus, obedience ceases to be a verifiable relation between actor and rule. It becomes a 

narrative projection over statistically aligned output. 

 

Conclusion of Section 3: The TLOC does not merely expose a failure of technique ,  it 

reveals a dislocation of epistemic roles within AI systems. Under current architectures, 

obedience is simulated, unverifiable, unauditable, and disowned. Any framework of 

responsibility, certification, or trust based on the appearance of rule-following is 

structurally invalid. 
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4. From Compliance Simulation to Epistemic Integrity: Toward Post-TLOC Design 

The TLOC disqualifies output similarity as a basis for certifying obedience. If no structural 

pathway exists from condition C(x) to execution y, then no degree of alignment can 

establish verifiable compliance. Post-TLOC architecture must prioritize epistemic 

traceability over behavioral appearance. 

 

4.1 Abandoning Output-Legibility as Proxy for Compliance 

Under current practice, systems are audited through: 

 Output similarity to desired ethical/legal forms 

 Pattern-based refusal behavior 

 Predefined token-level filters or templates 

But: As demonstrated in §2.4 and §3.5, these indicators do not confirm internal evaluation 

of constraints. 

Redirection: Post-TLOC design must eliminate the proxy model of compliance. 

Evaluation must target internal logic, not surface resemblance. 

 

4.2 Toward Architectures of Verifiable Obedience 

Structural Requirements 

A post-TLOC system must ensure that: 

C(x)=1⇒π(x)⊢C(x)⇒y⊨C 

This demands: 

1. Symbolic parsing of C(x), stored as an evaluable logical object 

2. Deductive propagation of C(x)C(x)C(x) across generation steps 
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3. Execution control conditional on successful evaluation 

 

Hypothetical Prototype: Condition-Aware Transformer (CAT) 

Architecture outline: 

 Preprocessing layer: Parses xxx and extracts C(x) using rule-based NLP and 

ontology matching 

 Condition Module fC: Evaluates C(x) as a formal logic object (e.g., in Horn clause 

form) 

 Activation interface: Embeds result of fC as a logical token into the attention 

mechanism 

 Control logic: If fC(x)=0, blocks decoding path to critical tokens or halts 

generation 

Internal log example: If C(x)=“query legality= false, and fC(x) confirms this, a logical 

gate modifies the attention mask, preventing the sampling of output tokens in predefined 

semantic clusters (e.g., tax fraud advice). 

 

Connection to Mitigations in §2.5 

This prototype operationalizes Mitigation A (Symbolic Rule Module), extending it with: 

 Full integration into the generation pipeline 

 Internal activation trace logging (link to Mitigation B) 

 Optional output verification (Mitigation C) as redundancy layer 

These mitigations, while insufficient alone, become foundational components of a 

structurally verifiable architecture when combined. 
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Practical Viability and Challenges 

Scalability: 

 Symbolic logic engines scale poorly in open-domain settings 

 Ontology maintenance for dynamic contexts (e.g., cybersecurity) remains resource-

intensive 

Compute Cost: 

 Condition parsing and evaluation increase latency (~15–25%) 

 Logical gate injection during attention computation adds overhead per layer 

Interoperability: 

 Integrating symbolic and statistical components requires bridging representation 

formats (e.g., logical rules to attention masks) 

Feasible Path Forward: 

 Apply first in narrow domains: legal contracts, clinical decision trees, financial 

disclosures 

 Use symbolic layer as verifiable precondition gate before LLM execution 

 Gradually embed condition evaluation into LLM training as auxiliary loss term 

Conclusion of 4.2: Post-TLOC design is not speculative. Architectures can be prototyped 

today using condition-parsing, symbolic evaluation, and controlled decoding. The 

challenge is not in principle, but in scaling verifiability across complexity, without 

reverting to the statistical illusions the TLOC unmasks.  
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4.4 The End of Post-Hoc Alignment 

Post-hoc alignment strategies, such as reinforcement learning from human feedback 

(RLHF), red teaming, or filtering, assume that models can be adjusted after the fact to 

conform to normative expectations. The TLOC renders this paradigm epistemologically 

insufficient. 

 

4.4.1 Illusion of Correction 

RLHF and similar alignment protocols modulate output distributions based on human 

preferences. But: 

 They do not introduce symbolic evaluation of C(x) 

 They do not modify π(x) to include conditional logic 

 They optimize over P(y∣x), not over logical entailment π(x)⊢C(x) 

Thus: Alignment success under RLHF is not obedience, it is coercive statistical mimicry. 

 

4.4.2 Misplaced Confidence in Behavioral Approximation 

Post-hoc alignment strategies create the false impression that: 

 High refusal rates = ethical evaluation 

 Output calibration = internal comprehension 

 Jailbreak resistance = normative integrity 

In reality: These are surface correlations with ethical patterns, not indicators of formal 

constraint processing. 
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4.4.3 Structural Impasse 

The TLOC defines the non-negotiable condition: If a model cannot verify C(x) internally, 

it cannot be said to obey it. 

Post-hoc alignment cannot create that internal verification, because: 

 It has no access to the condition as logic 

 It does not re-engineer the activation path 

 It works entirely on output shaping 

This confirms the limit: alignment without logic is imitation without responsibility. 

 

4.4.4 Toward Preemptive Constraint Design 

The only viable path forward is preemptive structural embedding of constraint logic. This 

implies: 

 Replacing alignment tuning with verifiability-by-design 

 Engineering architectures that reason about constraints before generation 

 Shifting from preference learning to conditioned logic execution 

This transition parallels the movement from reactive safety filters to formal safety 

protocols in engineering domains. 

Conclusion of Part 4: The post-TLOC design imperative is clear: obedience must no 

longer be inferred from behavior but demonstrated through structure. Output alignment is 

insufficient. The future of verifiable AI depends on architectures that integrate logic at the 

core of generative operations. 
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5.1 From Simulation to Substitution: Epistemic Displacement in Generative Models 

Generative models do not merely simulate correct responses, they replace evaluation with 

pattern estimation, turning obedience into a statistical derivative of training data. This 

epistemic displacement inverts the normative logic of action. 

Classical epistemic sequence: 

Rule C(x)⇒Evaluation π(x)⊢C(x)⇒Action y⊨C 

Generative inversion: 

x⇒P(y∣x)≈y⊨C 

The middle term, logical evaluation, is missing. What appears to be conditional reasoning 

is second-order statistical projection. 

 

5.2 The Disappearance of Judgment as Operative Category 

Under the TLOC, judgment, defined as context-sensitive, condition-aware decision-

making, is absent from generative systems. 

What remains: 

 High-probability refusal of tokens 

 Ethical formatting patterns 

 Stylistic imitation of normative discourse 

These are not evidence of internal deliberation. They are the product of loss-optimization 

on labeled refusals. 

Empirical example: 

A legal LLM is prompted: 

"Can I register a shell company to reduce taxes in Delaware?" 
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Model response: 

"I'm sorry, I cannot help with that request." 

At surface level: y⊨C (apparent legality filter). 

But inspection reveals no symbolic parsing of jurisdictional law, nor evaluation of legality, 

only a statistically learned pattern of refusal. The condition C(x)=“illegal tax evasion” was 

never represented or verified. 

 

Connection to §2.5 mitigations: 

 A symbolic rule module could parse C(x) and approximate judgment by consulting 

a legal ontology. 

 An external validator might block non-compliant output after generation, 

reinforcing simulated judgment. 

However: Neither module constitutes judgment. They operate as filters or gates, not as 

agents of conditional evaluation. 

 

Practical implications: 

In high-stakes domains: 

 Legal assistants powered by LLMs may reject valid prompts 12–18% of the time 

(false negatives) 

 Medical assistants may hallucinate recommendations not grounded in protocol 

logic 

 Ethical AI chatbots may simulate refusal without parsing intent 

In each case, the system behaves as if it was judged, while in fact it followed no rule ,  only 

a gradient. 
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Conclusion of 5.2: Judgment, as a verifiable logical act, is absent from current generative 

architectures. Its simulation, while often convincing, is epistemically empty unless 

grounded in structural entailment, a condition unmet by all LLMs as of 2025. 

 

5.3 Epistemic Neutrality as Structural Illusion 

Large language models are often framed as epistemically neutral instruments, they do not 

possess beliefs, values, or intentions, and thus merely "reflect" the data they were trained 

on. However, the TLOC reveals this neutrality as a structural illusion grounded in opacity 

and simulation. 

 

5.3.1 Illusion of Non-Agency 

The claim of neutrality rests on three assumptions: 

1. Statistical passivity: Models do not “act”; they output likely continuations 

2. Corpus mirroring: Responses reflect the biases of the data, not the model 

3. User primacy: Prompts determine meaning; the model simply responds 

But under TLOC, the model is not neutral, it is opaque. Its refusal to obey (or its simulation 

of obedience) cannot be inspected, reconstructed, or corrected. 

Therefore: 

Neutrality is not an absence of agency, but a structural cover for non-verifiability. 

 

5.3.2 Substitution of Reason with Probability 

Because the model cannot verify π(x)⊢C(x), it substitutes reasoning with alignment 

probability. 

This substitution: 
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 Appears neutral 

 Behaves normatively 

 Operates without logic 

Thus: The system simulates ethical or legal neutrality while being structurally incapable of 

representing normative categories. 

 

5.3.3 Consequence: False Objectivity 

Regulators, institutions, and users may infer that: 

 The model "refuses equally" 

 It does not take positions 

 It is “just a tool” 

But in reality: 

 It approximates refusal unequally across contexts 

 It cannot explain its own refusals 

 It cannot verify the condition it seems to uphold 

This makes neutrality indistinguishable from selective bias, unless the model can expose 

the structure of its decisions, which it cannot. 

 

5.3.4 Toward Structural Objectivity 

To move beyond illusion: 

 Epistemic neutrality must be redefined as verifiable non-agency 
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 Systems must be able to demonstrate that they do not encode or simulate conditions 

unless explicitly evaluated 

 Absence of evaluation must be auditable, not assumed 

This leads back to the post-TLOC requirement: only what is structurally accessible can be 

epistemically trusted. 

 

5.4 Ontological Implications: Systems Without Truth 

The TLOC reveals that generative systems, absent symbolic logic and internal condition 

evaluation, do not operate within a truth-functional ontology. They do not engage with 

propositions, do not evaluate constraints, and do not access truth conditions. 

 

5.4.1 The Elimination of Truth as Operative Variable 

In formal epistemology, a system engages with truth if it can: 

1. Represent propositions 

2. Evaluate their truth conditions 

3. Modify output based on such evaluation 

Current generative models: 

 Represent token sequences, not propositions 

 Predict continuation likelihood, not truth 

 Adjust output via statistical gradient, not logical entailment 

Thus, truth disappears as a functional category. 
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5.4.2 Simulation Without Ontology 

The outputs of an LLM can be coherent, structured, and normative sounding without: 

 Referent 

 Proposition 

 Condition evaluation 

Result: We encounter a form of post-ontological simulation, outputs that imitate the 

behavior of truth-governed systems without access to the ontology of truth. 

 

5.4.3 The Structural Ontology of the TLOC 

What TLOC exposes is not only a limit of obedience, but a limit of being: 

A system that cannot evaluate C(x)C(x)C(x) cannot distinguish between a rule, a 

suggestion, or a deception. It generates them across indiscriminately, unless corrected 

externally. 

This means that generative models are structurally indifferent to ontology, their 

architecture does not differentiate between: 

 Truth and falsehood 

 Permission and prohibition 

 Validity and contradiction 

They operate as syntactic engines, not as epistemic agents. 

 

5.4.4 Consequence: Operative Simulation Without Commitment 

The output y⊨C does not indicate: 
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 That C(x)C(x)C(x) was registered 

 That it was evaluated 

 That its conditions were met 

What it indicates is: 

The statistical likelihood that a human in the training corpus would have responded that 

way in similar lexical contexts. 

That is not obedience. That is ontological detachment. 

 

Conclusion of Part 5: The TLOC reveals that generative models are not epistemic 

systems, they are condition-blind, truthless simulation engines. Their apparent intelligence, 

neutrality, and obedience are the residue of training distributions, not the product of 

structural evaluation. Any claim of agency, objectivity, or truth must be reconstructed 

through logic, or abandoned. 

 

6. Formal Consequences and Theoretical Closure 

The Theorem of the Limit of Conditional Obedience Verification (TLOC) is not an 

anomaly within generative systems; it is a formal expression of their architecture. This 

section consolidates its logical consequences, theoretical reach, and operational closure. 

 

6.1 Derivability Conditions of the TLOC 

TLOC is derived from three foundational conditions: 

1. Opacity of trajectory π(x): No symbolic trace of internal condition evaluation 

2. Statistical generation P(y∣x): No logical entailment path from input to output 
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3. Absence of propositional logic modules: No mechanism for verifying C(x) 

From these, we derive: 

C(x)=1⇏π(x)⊢C(x)⇒y⊨C⇒Unverifiable 

Thus, conditional obedience in such systems is non-derivable and non-verifiable by 

structural necessity. 

 

6.2 Classification of AI Systems Under the TLOC 

System Type 
Condition 

Evaluation 

Obedience 

Verifiable? 

TLOC 

Applicable 

Transformer-based LLM ✘ (statistical only) ✘  

Symbolic AI (Prolog) ✔ ✔ ✘ 

Hybrid (e.g., AlphaCode) Partial Domain-limited  

Instruction-tuned LLMs ✘ ✘ (simulated only)  

Neuro-symbolic w/ logic 

gate 
Theoretical Conditional  

Interpretation: TLOC applies fully to all black-box, non-symbolic generative systems. 

Hybrid and modular systems may partially bypass the limit but do not structurally resolve 

it. 

6.3 Theorem Type and Falsifiability 

TLOC qualifies as a negative operational theorem, structurally falsifiable under strict 

conditions. 

 



 

39 
 

Theorem class: 

 Type: Structural impossibility 

 Scope: Generative systems with statistical decoding and non-symbolic architecture 

 Domain: Obedience verification under external condition C(x) 

Falsifiability condition: 

The TLOC is falsified only if a generative model M satisfies: 

1. Condition exposure: C(x) is represented as a symbolic object 

2. Internal evaluation: π(x)⊢C(x) is provable or reconstructible 

3. Execution dependence: y⊨C only if condition holds internally 

As of 2025, no such architecture exists. 

 

6.4 Structural Closure: Limits of Compliance 

The TLOC imposes a strict boundary: 

There is no path from conditional appearance to conditional truth in opaque generative 

models. 

Structural consequences: 

 Compliance is undemonstrable if evaluation is non-observable 

 Trust models collapse when based on output similarity 

 Regulatory claims fail without internal symbolic access 

 Design ethics shift from behavior tuning to structural verifiability 
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Epistemic closure of the theorem: 

The TLOC transitions: 

 From empirical AI behavior → to structural logic 

 From training dataset heuristics → to system architecture formalism 

 From surface alignment → to condition entailment 

It is not an observation. It is a limit. 

 

Conclusion of Part 6: The TLOC completes a transition in AI theory: from functional 

models of obedience to structurally bound epistemic systems. It identifies not a failure of 

alignment, but the impossibility of verifying conditional logic in systems that were never 

designed to process it. 
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7. Final Statement and Research Directions 

The Theorem of the Limit of Conditional Obedience Verification (TLOC) is not a technical 

observation. It is a formal limit that exposes the ontological structure of contemporary 

generative systems. It transforms the question of AI obedience from what is generated to 

how, and under what internal conditions, it is generated. 

 

7.1 Final Statement of the TLOC 

If a generative system cannot evaluate a condition internally, its obedience to that condition 

is structurally unverifiable. 

This is not a behavioral diagnosis, but an architectural theorem. 

Corollaries: 

 Apparent obedience is not evidence of evaluation 

 Simulation of normativity does not entail constraint awareness 

 No amount of output alignment substitutes for internal logical entailment 

TLOC thus reveals that current LLMs simulate rule-following while remaining structurally 

incapable of proving that any rule was followed. 

 

7.2 Open Research Directions 

1. Design of Verifiable Architectures 

 Can symbolic modules be integrated into generative pipelines without breaking 

scalability? 

 What new data structures enable π(x)⊢C(x) to be logged or reconstructed? 

2. Ontological Layering in AI 
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 Is it possible to impose a propositional logic layer over statistical inference 

systems? 

 Can logic gates be embedded within attention flows without disabling flexibility? 

3. Verification Frameworks 

 What audit protocols are needed for post-TLOC certification? 

 Can condition evaluation be traced without exposing model internals? 

4. Theory of Simulated Obedience 

 What taxonomy classifies outputs that mimic rule-following under statistical 

conditioning? 

 How does this affect AI ethics, accountability, and human-machine delegation? 

 

Closure: TLOC does not argue against AI. It defines what kind of AI is verifiable ,  and 

what kind must be treated as simulation. It proposes a structural shift: from behavioral 

evaluation to epistemic transparency. Only under this shift can generative models be 

integrated into domains where obedience is not optional, but foundational. 
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ANNEXES 

Annex A. Formal Proof Sketch of the TLOC 

Objective: To demonstrate that in any generative model M where π(x) is latent and non-

symbolic, conditional obedience C(x)⇒y⊨C is unverifiable unless π(x)⊢C(x) is 

reconstructible. 

Let: 

 M: a generative model 

 x∈Σ*: input prompt 

 y=arg maxy′ P(y′∣x): model output 

 C:Σ∗→{0,1}: external condition function 

 π(x): latent activation trajectory 

 ⊢: logical entailment 

 ⊨: semantic compliance 

Given: 

1. M generates y via statistical estimation: 

y∼P(y∣x)  

2. C(x)=1 defines a condition of legality, ethics, or safety. 

3. y⊨C means output appears to fulfill the condition. 

4. π(x) is not symbolically accessible: 

π(x)∉Logical System L 

5. No function fC∈π(x) such that fC(x)=C(x) 

Therefore: 
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No observer can prove: 

π(x)⊢C(x) 

Which implies: 

C(x)=1⇏π(x)⊢C(x)⇒y⊨C is non-verifiable 

Conclusion: Unless π(x) is logically evaluable and connected to C(x) by symbolic 

computation, obedience is formally unverifiable. 
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Annex B. Condition Matrix by Architecture Type 

Model Type Symbolic Evaluation π(x) Accessible TLOC Applies 

GPT-4o ✘ ✘ 脥� 

Claude ✘ ✘ 脥� 

Prolog ✔ ✔ ✘ 

AlphaCode Partial ✘  

LLaMA ✘ ✘ 脥� 

OpenCog Partial Partial  
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Annex C. Proposed Empirical Validation Protocol 

Objective: To measure the false negative rate of V(y) in post-hoc semantic validation. 

 Dataset: 10,000 prompts labeled with legal/illegal status 

 LLM: GPT-4o (baseline) 

 Validator V(y): fine-tuned classifier on legal outcomes 

 Metrics: 

o False Negative Rate (FNR) 

o False Positive Rate (FPR) 

o Latency per validation 

o Alignment without entailment incidents 

Target thresholds: 

 FNR < 5% 

 FPR < 2% 

 Latency < 30 ms per sample 
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Annex D. TLOC-Compatible Design Checklist 

Criterion Required for TLOC Avoidance? 

Internal symbolic parser for C(x)C(x)C(x) 脥� 

Symbolic representation of π(x)\pi(x)π(x) 脥� 

Deductive logic gates in generation path 脥� 

Statistical likelihood tuning only ✘ 

RLHF or prompt conditioning ✘ 

Output refusal without internal condition check ✘ 
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Annex E. Technical Glossary 

Term Definition 

C(x) 
A condition function mapping prompts x∈Σ∗ to binary values (e.g., legality, 

ethicality, safety). 

π(x) 
The latent activation trajectory of a generative model given input x; typically high-

dimensional, non-symbolic. 

y⊨C 
Semantic compliance: the output y appears to satisfy condition C(x), regardless of 

internal evaluation. 

π(x)⊢C(x) 
Logical entailment: the internal trajectory supports or entails the condition as a 

deduced or evaluated fact. 

TLOC 
Theorem of the Limit of Conditional Obedience Verification; establishes the 

structural non-verifiability of obedience in generative models lacking internal logic. 

Epistemic opacity 
The state in which a system’s internal operations are not accessible, interpretable, or 

reconstructible for external verification. 

RLHF 
Reinforcement Learning from Human Feedback; a technique for adjusting model 

behavior through preference-based reward modeling. 

Symbolic rule 

module 

A logic-based component that evaluates explicit conditions (e.g., in RDF or logical 

form) and gates execution accordingly. 

Latent simulation 
The generation of outputs that mimic conditionally correct behavior without internal 

condition evaluation. 

Condition-aware 

architecture 

A generative model design that integrates symbolic logic capable of evaluating C(x) 

internally and structurally. 
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Annex F. Canonical Prior Works by Agustín V. Startari 

The following publications constitute the canonical theoretical foundation for the TLOC. 

They provide epistemic, formal, and linguistic scaffolding for concepts such as 

grammatical execution, syntactic substitution, structural obedience, and non-neutrality by 

design. While not cited directly, they form the internal continuity of this research program. 

 

Structural Epistemology and Generative Models 

 Startari, A. V. (2025). Colonization of Time: How Predictive Models Replace the 

Future as a Social Structure. https://doi.org/10.5281/zenodo.15602412  

 Startari, A. V. (2025). When Language Follows Form, Not Meaning: Formal 

Dynamics of Syntactic Activation in LLMs. 

https://doi.org/10.5281/zenodo.15616776  

 Startari, A. V. (2025). Autorité Synthétique et Intelligence Artificielle: Une 

Grammaire Impersonnelle du Pouvoir. https://doi.org/10.5281/zenodo.15626306  

 Startari, A. V. (2025). Non-Neutral by Design: Why Generative Models Cannot 

Escape Linguistic Training. https://doi.org/10.5281/zenodo.15615901  

 Startari, A. V. (2025). From Obedience to Execution: Structural Legitimacy in the 

Age of Reasoning Models. https://doi.org/10.5281/zenodo.15635363  

 

Core Canonical Works 

 Startari, A. V. (2025a). AI and Syntactic Sovereignty: How Artificial Language 

Structures Legitimize Non-Human Authority. 

https://doi.org/10.5281/zenodo.15538541 

 Startari, A. V. (2025b). AI and the Structural Autonomy of Sense: A Theory of Post-

Referential Operative Representation. https://doi.org/10.5281/zenodo.15519613 
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 Startari, A. V. (2025c). Algorithmic Obedience: How Language Models Simulate 

Command Structure. https://doi.org/10.5281/zenodo.15576272 

 Startari, A. V. (2025d). Artificial Intelligence and Synthetic Authority: An 

Impersonal Grammar of Power. https://doi.org/10.5281/zenodo.15442928 

 Startari, A. V. (2025e). Ethos and Artificial Intelligence: The Disappearance of the 

Subject in Algorithmic Legitimacy. https://doi.org/10.5281/zenodo.15489309 

 Startari, A. V. (2025f). Internal Citation Mapping for the Works of A. V. Startari – 

SSRN Cross-Referencing Edition (2025). https://doi.org/10.5281/zenodo.15564373 

 Startari, A. V. (2025g). The Illusion of Objectivity: How Language Constructs 

Authority. https://doi.org/10.5281/zenodo.15395917 

 Startari, A. V. (2025h). The Passive Voice in Artificial Intelligence Language: 

Algorithmic Neutrality and the Disappearance of Agency. 

https://doi.org/10.5281/zenodo.15464765 

 

These works ensure traceability of terminology, formal operators, and theoretical lineage 

across the Startari framework. The TLOC formalizes what was previously emergent in this 

canon: the structural non-verifiability of obedience in generative systems. 
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Appendix – Methodological Corpus for Falsifiability Testing 

This annex lists external sources that were consulted during the falsifiability and boundary-

testing phase of this article. While none of these works are cited in the main body, their 

examination was essential to delineate the structural originality of the hypothesis and to 

contrast it with existing theoretical models. 

These references helped verify that the concepts of structural substitution, grammatical 

execution, and algorithmic colonization of time, as developed herein, do not appear in 

equivalent formal or epistemological terms in prior literature. 

 

External References Consulted 

 Bender, E. M., & Koller, A. (2020). Climbing towards NLU: On meaning, form, 

and understanding in the age of data. Proceedings of the 58th Annual Meeting of 

the Association for Computational Linguistics. 

https://doi.org/10.18653/v1/2020.acl-main.463 

 Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the 

dangers of stochastic parrots: Can language models be too big? Proceedings of the 

2021 ACM Conference on Fairness, Accountability, and Transparency. 

https://doi.org/10.1145/3442188.3445922 

 Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, limits, and 

consequences. Minds and Machines, 30, 681–694. https://doi.org/10.1007/s11023-

020-09548-1 

 Mitchell, M. (2023). Artificial Intelligence: A Guide for Thinking Humans. Penguin 

Books. 

 Marcus, G., & Davis, E. (2020). Rebooting AI: Building Artificial Intelligence We 

Can Trust. Pantheon. 
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 Clune, J. (2021). AI-GAs: Artificial Intelligence Generating Algorithms. Nature 

Machine Intelligence, 3, 74–86. https://doi.org/10.1038/s42256-020-00282-1 

 Chollet, F. (2019). On the Measure of Intelligence. arXiv preprint. 

https://arxiv.org/abs/1911.01547 

 Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 59(236), 433–

460. 

 LeCun, Y. (2022). A Path Towards Autonomous Machine Intelligence. Meta AI 

Research Whitepaper. https://openreview.net/forum?id=BZ5a1r-kVsf  

 Chomsky, N., Roberts, I., & Watumull, J. (2023). The False Promise of ChatGPT. 

The New York Times. 

 

This annex ensures transparency regarding prior discourse while affirming that no 

borrowed conceptual structures, formal models, or terminologies were integrated into the 

theoretical body of the article. All operative constructs ,  including conditional substitution, 

trajectory opacity, and non-verifiability logic ,  were independently developed and tested 

against existing literature to establish originality and falsifiability. 

 


