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ABSTRACT 

 
Standard microprocessors are generally designed to deal 
efficiently with different types of tasks; their general purpose 
architecture can lead to misuse of resources, creating a large gap 
between the computational efficiency of microprocessors and 
custom silicon. 
 
The ever increasing complexity of Field Programmable Logic 
devices is driving the industry to look for innovative System on 
a Chip solutions; using programmable logic, the whole design 
can be tuned to the application requirements. 
 
In this paper, under the acronym MPOC (Multiprocessors On a 
Chip) we propose some applicable ideas on multiprocessing 
embedded configurable architectures, targeting System on a 
Programmable Chip (SOPC) cost-effective designs. Using 
heterogeneous medium or low performance soft-core processors 
instead of a single high performance processor, and some 
standardized communication schemes to link these multiple 
processors, the “best” core can be chosen for each subtask using 
a computational efficiency criteria, and therefore improving 
silicon usage. 
 
System-level design [1] [2] is also considered: models of tasks 
and links, parameterized soft-core processors, and the use of a 
standard HDL for system description can lead to automatic 
generation of the final design. 
 
Keywords: embedded multiprocessing, system-on-chip, 
distributed heterogeneous embedded system, programmable 
logic, IP cores,  system-level design. 
 

1. INTRODUCTION 
 
Microprocessors are the dominant devices used in general-
purpose computations. Since a standard processor is designed to 
solve efficiently tasks of different types, resources may be 
misused or not used at all in a specific application, this lead to a 

large gap between the computational efficiency of micro-
processors (software) and custom silicon (hardware). 
 
If a given application is completely known and it will not 
change, an ASIC (Application Specific Integrated Circuit) may 
be designed; however, if the application is not completely 
known or it can change, a software programmable unit has been 
usually selected. 
 
As the complexity of embedded systems grows, the industry is 
being forced to look for SOC solutions (SOC: System On a 
Chip), and different alternatives for hardware-software codesign 
must be considered [3][4][5]. Recently, the availability of high-
density Field Programmable Logic devices has opened new 
ways to explore, adding embedded processors to hardware 
blocks as processing engines [6][7][8]. 
 
Almost every modern product behavior can be defined by  
multi-task processes, and some different solutions must be 
considered to synthesize it: 
 
• Hardware-only: this solution is well suited for very high speed 

applications, with simple control decisions (e.g., a router). 
• Mono-processor multi task: using a single embedded 

processor and an OS kernel, multiple tasks may be served in 
parallel using a time-slice scheme. If real-time constraints 
must be satisfied, a RTOS (Real Time Operating System) is 
needed to provide an adequate service latency. 

• Multi-Homogeneous processors: if highly parallel tasks must 
be solved (e.g., image processing), many processors of the 
same type running under a SIMD multiprocessing scheme 
may be the optimal solution;. since processors must exchange 
information, different buses have been proposed according to 
the coupling degree of processes.  

• Multi Non Homogeneous processors: if a process is described 
by multiple, different  tasks, different specialized processors 
can be used, choosing the best core for each subtask (or group 
of similar subtasks) with a computational efficiency criteria. 

  



2. MULTI-TASK CHALLENGES 
 
Any multitask application possesses some challenges related to 
how processes run, how they interchange information, and how 
they keep synchronized. 
 
Communication and synchronization between processes:  When 
two or more tasks are running concurrently, some methods must 
be provided for communication and synchronization between 
processes: 
 
• In single-processor architectures, the use of semaphores and 

shared memory overcomes the problem; in this case the only 
new requirement is the availability of indivisible TEST&SET 
instructions. 

• In multi-processor systems, a multimaster bus is often used to 
access semaphores and shared memory, adding new levels of 
complexity (bus arbitration, lock-prevent, access latency, etc.); 
for SOC systems [9] it is usual to find high performance buses 
like ARM’s AMBA, IBM’s CoreConnect, Silicore’s 
Wishbone, or proprietary solutions. As an alternative, peer to 
peer links can be used to communicate processes, changing 
from bus to mesh topology. An innovative approach to 
interprocessor communication for tightly coupled tasks were 
the Transputers’ Tlinks [17], where no differences were made 
–from a software point of view- if two tasks exchanged data in 
the same or in different processors. 

 
Task scheduling: When one CPU must serve multiple tasks, a 
task scheduler is required to determine which task will run and 
how much time, and what other task will be activated after. In 
almost all cases this schedule is managed by a software OS, 
being an interesting exception the hardware task scheduler built 
within each transputer. 
 

3. THE SOPC SOLUTION 
 
With Field Programmable Logic (FPL) devices surpassing one 
million gates, SOPC integrated solutions (SOPC: System on a 
Programmable Chip) are a real option for embedded multitask 
solutions. 
 
Some companies are offering soft-core solutions for proprietary 
processors (NIOS [13]) or standard (8051 and others [12]); for 
intensive throughput applications hard-core solutions are also 
offered, with pre-burned high performance processors (like 
MIPS32_4Kc or ARM922 [14]) embedded together with large 
blocks of memory and programmable logic. In any case, no 
resources are built for hardware multitask scheduling. 
 
An FPL core is a flexible logic fabric that can be customized to 
implement any digital circuit after fabrication. FPL has led to a 
new design paradigm, adding great flexibility to the design 
process: 
 
• Processor selection: when using soft-core solutions, the 

processor can be selected according to the application needs. 
• Processor resources: the designer can define what memory and 

peripherals will be embedded. This feature provides efficient 
silicon usage, and the possibility of adding standard or special-
purpose peripherals as required. 

• IP (Intellectual Property): the reuse of existing validated 
modules, that can be regarded as library blocks with a given 
implementation, can dramatically reduce the design cycle. 

• Reconfigurability: using programmable logic, a SOPC can be 
developed before some specifications have been defined, or 
accommodated to last minute changes. In some cases, 
reconfigurability can be used for a post-market upgrade or 
customization feature. 

 
It is of main importance to understand that any SOPC design 
involves a complex set of hardware-software codesign 
decisions, with product cost and flexibility in mind, and real-
time constraints to be met. Each SOPC defines a specific design 
scenario: it is obvious that decisions, target costs, complexity 
and timing constraints for a 622 Mbps ATM bridge are 
absolutely different to those for an high-end automotive 
computer,  and therefore it is clear that the design criteria will be 
different. 
 

4. THE MPOC NON-HOMOGENEOUS 

MULTIPROCESSORS ON-A-CHIP PROPOSAL 
 
The MPOC (MultiProcessors On a Chip) proposal is oriented to 
cost-effective applications: the key idea is that the use of 
multiple non homogeneous and simple processors [10][11] can 
exploit the strengths of different architectures for different tasks 
more effectively than a single high performance CPU. This 
proposal is not oriented to dynamically reconfigured devices, 
neither to high-performance mainstream computing applications 
with complex features such as cache memories, dynamic 
memory allocation, garbage collection or similar matters. 
 
From a “software” point of view, the MPOC approach looks for 
a structured and a simple way to build multitask applications, 
with abstraction of the hardware resources involved in the 
solution. 
 
From a “hardware” point of view, the MPOC approach looks for 
a structured way to embed heterogeneous medium or low 
performance soft-core processors, linking them through the use 
of standardized communication schemes. The selection criteria 
for the different processing units involves many aspects, 
according to the application (general purpose or specialized), the 
hardware required to manage the multi-process environment, 
and the memory and I/O needs [18]. The ability of choosing in 
each case a processor just sized to the requirement can reduce 
the fitting challenges, minimize routing delays and fan-out, and 
maximize overall performance in speed and/or cost. 
  
That means, the “best” core can be chosen for each subtask (or 
group of similar subtasks) using a computational efficiency 
criteria, and therefore improving silicon usage. Using field 
programmable logic, software and hardware compilation can be 
done together, making feasible the hardware/software codesign 
paradigm. 
 

5. MPOC DESCRIPTION 
 
A SOPC multiprocessor can be described as a hierarchical 
structure of processors, tasks, channels and ports. Through the 
use of a standard HDL for system-level description, automatic 
generation of the final design can be achieved.  
 
A SOPC: is built using a set of processors, I/O ports and 
channels. From an HDL point of view, the SOPC description 
will include a complete enumeration of I/O ports, multiple 
instances of different processors and channels, and the 



interconnects between processors, or between processors and 
I/O ports. 

 
Using VHDL hardware description language, a SOPC entity 
could be defined as: 
 
LIBRARY mpoc; USE mpoc.sopc.all; 
ENTITY this_sopc IS 
 GENERIC ( pin_mapping: string :=  
  “IN_a:23:HiZ,..,IN_k:31:PUP,”& 
  “OUT_a:44:PP:fast,..,OUT_b:35:OD:slow,”); 
 PORT ( 
 -- global signals 
  clk,clr: IN  STD_LOGIC;  
 -- external I/O 
  ...: OUT STD_LOGIC; 
  ...: IN  STD_LOGIC; 
END ENTITY this_sopc; 

 
ARCHITECTURE x OF this_sopc IS 
 SIGNAL link_1: LPP8S1; 
 ... 
 SIGNAL link_j: ...; 
 
BEGIN 
  processor_1: ENTITY work.mcu_1 PORT MAP (..); 
  ... 
  processor_n: ENTITY work.mcu_n PORT MAP (..); 
  channel_1: ENTITY mpoc.chpp8s1 PORT MAP (..); 
  ... 
  channel_m: ENTITY ... PORT MAP (..); 
END ARCHITECTURE x; 

 
Some points must be noted in this top-level description: 
 
• A package sopc describes non-VHDL data types (such as 

links) and objects (different types of channels) 
• A generic constant string pin_mapping is used to define 

some architectural synthesis attributes of all I/O ports (like pin 
number, slew rate, pull-ups, etc.). This constant can be 
inherited from lower hierarchy objects and is used to generate 
the constraints file required by the HDL compiler. 

• The entity’s PORT field includes the I/O ports used by all 
internal processors 

• The ARCHITECTURE local signals instantiate the interprocessor 
channels, using data types (LPP8S1..) defined in the sopc 
package 

• No specific hardware is described; only processors and 
channels are instantiated and connected. Note that channels 
are standard MPOC objects, therefore their description comes 
from the mpoc library; instead, embedded processors are 
special cases of parameterized processors, and they are taken 
from the work directory. 

 

A processor: has a processor type and a processor name. Each 
processor entity is created in the work directory, as a special 
instance of a “standard” parameterized processor, with specific 
parameters values (ROM memory size, RAM memory size, 
name and type of I/O ports, name and type of channels, etc.), 
and some optional settings (like DEBUG_STATUS). 
 
LIBRARY mpoc; USE mpoc.sopc.all; 
ENTITY mcu_n IS 
 GENERIC ( 
  pin_mapping: string :=  
  “IN_a:23:HiZ,.., OUT_b:35:OD:slow,” 
  code_generator: string := “mcu_n.cmd”); 
 PORT ( 
 -- global signals 
  clk,clr: IN  STD_LOGIC;  
 -- external I/O 
  ...: OUT STD_LOGIC; 
  ...: IN  STD_LOGIC; 
 -- external channels 
  ...: OUT ... 
  ...: IN  ... 
END ENTITY mcu_n; 
 
ARCHITECTURE x OF mcu_n IS 
 SIGNAL ilink_1,..,ilinkj: LPP8S1; 
BEGIN 
 this_cpu : ENTITY mpoc.mc6805  
    GENERIC MAP (..=>..,..=>..) 
    PORT MAP (..=>..,..=>..); 
  ... 
END ARCHITECTURE x; 

 
The processor description has also some points to be noted: 
 
• The GENERIC field only contains the pin_mapping constant 

with the architectural synthesis attributes of I/O ports used by 
this processor. 

• This field also defines a generic string constant 
code_generator to point to a script file (“mcu_n.cmd” in 
this example) needed to transform the source code of the tasks 
assigned to this processor (written in C, C++, Assembler or 
other languages) in a synthesizable format. As an example, 
“MIF” format when using ALTERA FLEX10K devices. 

• The entity’s PORT field now includes not only the I/O ports 
used by this processor, but also the channel ports required to 
communicate with other processors. 

• If this processor supports multitasking, and the internal tasks 
must communicate between them, some local signals are 
instantiated in the ARCHITECTURE field for intertask channels. 

• An specific instance “this_cpu” of a standard parameterized 
processor (mpoc.mc6805 in the example) is created, where 
parameters values are given.  

 
A Task: has a name, a description of the channel ports it uses, 
an I/O ports enumeration, and a source code; it is assigned to a 
specific processor, and a specific command file is used to 
transform the source code description to a synthesizable format. 
 
A task is mainly a “software object”, although some pre-compile 
information (such as I/O ports and channel ports) and some 
post-compiled information (code size, RAM size, executable 
code) is used to parameterize the VHDL description of the 
associated processor. 
 
To enable the use of different C/Assembler compilers and 
linkers but still forcing coherence, a good solution is to include 
pre-compile information in the source code as synthesis 
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directives or attributes formatted as comments, using a ruled 
syntax (e.g., strings such as  /*synthesis <directive>*/); this 
method to embed directives or attributes is commonly used by 
EDA design tools [16]. Using these directives, some hardware 
information (name, type and address of I/O and channel ports, 
pin numbers of I/O ports) can be automatically exported from 
the source code to the processors VHDL instances. 
 
A Channel: is usually a hardware virtual object, since it only 
describes pass-through connections between “talkers” and 
“listeners”; it is only in the case of multi-master channels, when 
wired-OR lines are required to resolve access rights (I2C or 
CAN), where a channel may consume some hardware resources. 
 
In all cases, however, a channel is used as a formalism to force 
type coherence in its assigned channel ports. Channels are 
defined within the mpoc library, being included as components 
in the sopc package. 
 
Every channel instance has: 
 
• A channel name. 
• A channel type, associated to a physical link (Peer to Peer, 

Broadcast Single Master or Broadcast Multimaster, or others) 
and to a logical protocol related to the handshake method, 
access arbitration, etc.; each channel type is described as a 
separate component in the sopc package. 

 
This is a key point of the MPOC proposal: the use of “standard” 
channel types having a syntax defined in the sopc package; if 
only standardized communication schemes are used, both for 
inter and intra-processor messages, each processor interface can 
be designed with abstraction of the partner’s type, ensuring 
connectivity and avoiding a multiplicity of protocols; this 
feature can also open the door to a multi-vendor portfolio of IP 
solutions. 
  
The following is a VHDL definition of a “peer to peer” serial 
port that transports 8-bit packets: 
 
LIBRARY mpoc; USE mpoc.sopc.all; 
ENTITY chpp8s1 IS 
 PORT( 
  din: IN LPP8S1;   rxrdy: IN STD_LOGIC; 
  dout: OUT LPP8S1; chrdy: OUT STD_LOGIC); 
END ENTITY chpp8s1; 

 
ARCHITECTURE x OF chpp8s1 IS 
BEGIN 
  dout <= din; chrdy <= rxrdy;  
END ARCHITECTURE x; 
END; 
 
This description, included in the mpoc library, shows how the 
right type of data is required to define the pass-through 
connections. 
 
A Channel port: has a fixed relationship with a given channel, 
a task and a processor. 
 
An I/O port: has an I/O pin number, and is described within a 
task. As detailed before, synthesis attributes such as “I/O port” 
and “I/O pin number” are the best way to export these attributes 
to the HDL description of the processor where this port is 
connected. 
 

6. THE SOPC PACKAGE 
 
The mpoc library and the sopc package are of main importance 
for the MPOC proposal. As shown in the listing, the sopc 
package describes the new data types associated to channels, 
and the name and type of every channels port. 
 
library IEEE; use IEEE.std_logic_1164.all; 
package sopc is 
 type LPP8S1 is STD_LOGIC;  
 type LPP8P  is STD_LOGIC_VECTOR (0 to 7);  
  ... 
 component chpp8s1 
  port (din: IN LPP8S1; rxrdy: IN STD_LOGIC; 
        dout: OUT LPP8S1; chrdy: OUT STD_LOGIC); 
 end component; 
 component chpp8p 
  port (din: IN LPP8P;... 
        dout: OUT LPP8P;...); 
 end component; 
 component ... 
  port (...); 
 end component; 
end package; 
 

7. THE MPOC BUILDER 

 
The name MPOC BUILDER identifies a Graphic User Interface, 
still under development, that will be used for MPOC design. 
 
The definition of a MPOC design involves three main steps: 
 
• Instantiation of processors: a processor can be created, 

modified or deleted. To create a new processor it is required 
to give it a name, and to select its type from the list of 
configured processors. During this step, or later, the designer 
can add/modify/remove links to existing channels, and define 
or clear the assigned task. 

• Channels definition: a channel can be created, modified or 
deleted. To create a new channel it is  required to give it a 
name, and to select its type from the list of configured 
channels. At this moment, or later, the designer can link the 
channel ports to specific ports of existing processors. 

• Task definition: a task can be added or removed. When a 
task is added, the name of the source code and the name of 
the command file used to process it are both required. 

 
Once an MPOC is defined, a “MAKE” utility can be invoked to 
process the tasks’ source code, to create the processors 
instances, to build the top VHDL files, and to run the synthesis 
tool. This utility reads synthesis directives/attributes from the 
source code, and upgrades an internal  data-base, used later to 
create the processors instances. 
 
Additionally, the MPOC GUI has auxiliary functions to add or 
remove new types of processors and channels from the list of 
available objects; this maintenance process upgrades the sopc 
package file and adds these new processors to the mpoc library. 
Also, it should be configured to define the hardware and the 
place&root synthesis tools needed to generate the final 
hardware.  
 

8. SYNCHRONIZATION 
 
Tasks synchronize themselves by messages sent and 
acknowledged through channels. Although the MPOC proposal 
defines standard channels from the channel side point of view, 



each processor can manage internally the transmission/reception 
of messages in a different way. 
 
If the processor has an internal RDY feature (analog to the RDY 
line used to access slow memories), transmission/reception of 
messages can behave as blocking statements. A transmitter 
sending a message halts the task until the message is 
acknowledged; similarly, a receiver request for data halts the 
task until the message arrives. 
 
If no blocking is desired, interrupts generation or polling can be 
used for synchronization. 
 

9. EXAMPLE OF CHANNEL PORTS 
 
Proposed channel interfaces are serial monobyte/monoword, 
parallel links, and shared memories. 
 
A parallel port: The most simple interprocessor port is a 
blocking parallel port. The talker side uses registers to latch the 
data and a state machine for synchronization; the listener side 
only has another small state machine. 
• In the talker side the 

rdy line is deasserted 
and new is asserted –
halting the processor- 
when new data is 
written (ld asserted); 
when the listener reads 
the data, ack is 
activated, the listener 
restarts (rdy=’1’) and 
new is cleared. 

• In the listener side, if 
there is no new data 
when the listener tries to read, the listener processor is halted 
until data becomes available. 

 
A VHDL93 declaration of both ports could be: 
 
ENTITY tx_ptp_8p IS  
PORT ( 
-- global signals 
  clk,clr: IN  STD_LOGIC;  
-- public signals (channel side) 
  txpdat:  OUT LPP8P; 
  new :   OUT STD_LOGIC; -- new data flag  
  ack:   IN  STD_LOGIC; -- ack from listener 
-- private signals (processor side) 
  ld :     IN  STD_LOGIC;   
  rdy :     OUT STD_LOGIC; -- sync output 
  data:    IN  STD_LOGIC_VECTOR (0 TO 7));  
END ENTITY tx_ptp_8p; 

 
ENTITY rx_ptp_8p IS  
PORT ( 
-- global signals 
  clk,clr: IN  STD_LOGIC;  
-- public signals (channel side) 
  rxpdat:  IN LPP8P; 
  new :  IN STD_LOGIC; -- new data flag  
  ack:  OUT STD_LOGIC; -- ack to talker 
-- private signals (processor side) 
  ld :     IN  STD_LOGIC;   
  rdy :     OUT STD_LOGIC; -- sync output 
  data:    OUT STD_LOGIC_VECTOR (0 TO 7));  
END ENTITY rx_ptp_8p; 

 

A serial talker: uses 2 lines, one for transmitting serial data and 
the other for acknowledgment purposes. Each time the talker 
transmits a byte, a start bit (logic ‘1’) is output on the channel, 
and then 8 bits of data. For synchronization, after transmission is 
started, the remote listener deasserts chrdy and the local 
processor is halted (rdy=0) until the listener reads the data 
(asserting chrdy to ‘1’). 
 
A serial channel has the following benefits: 
• It is simple, taking only few resources (e.g., less than 30 

macrocells when using a FLEX10K device). 
• It uses very low connectivity resources within the FPL device. 
 
The block-level architecture, a functional simulation, and a 
VHDL93 definition of a transmitter port (for peer to peer, 8 bits 
data, serial single-bit channel), could be as follows: 
 
ENTITY tx_ptp_8s1 IS  
PORT ( 
-- global signals 
  clk,clr: IN  STD_LOGIC;  
-- public signals (channel side) 
  txsdat:  OUT STD_LOGIC; -- serial output 
  chrdy:   IN  STD_LOGIC;    -- ack input 
-- private signals (processor side) 
  ld :     IN  STD_LOGIC;   
  data:    IN  STD_LOGIC_VECTOR (0 TO 7);  
  rdy :     OUT STD_LOGIC); -- sync output 
END ENTITY tx_ptp_8s1; 

 
In this serial port, the data frame start bit behaves as the 
transmitter handshake signal (equivalent to new in the parallel 
port); in this instance chrdy is the receiver’s response 
(equivalent to ack in the parallel port). 
 
Other interfaces: many other interfaces between processors 
may be proposed, as a function of each FPL architecture. As an 
example, shared memories can be easily implemented when 
using ALTERA FLEX10KE devices, where dual port memory 
blocks (EABs) are available as a standard feature. 
 

10. ADDING MULTITASK CAPABILITIES TO 

EMBEDDED PROCESSORS 
 
Multitask processors are not common as IP solutions in the 
programmable logic market. Multitasking management involves 
context-switching, sleeping/waking up of processes,  hardware 
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schedulers, and channel interfaces, and is costly from the point 
of view of hardware resources and processing overhead.  
 
However, if the number of tasks is reduced, and they are 
completely known before the hardware is synthesized, these 
problems can be enormously simplified: 
 
• Instead of using the stack to save internal registers, a 

hardware stack based on a circular queue can be added to 
each register, with as many positions as tasks are defined for 
this processor. 

• Three different events can put a task in the “sleeping” state: a 
timeout generated by the hardware scheduler, a blocking write 
on a channel that waits for acknowledge, and a blocking read 
of  a channel that has no new data. 

• Since data and code size of each task are known and fixed, a 
simple adder (or two, for a Harvard architecture) and one (or 
two) constant generators can be used to transform tasks’ 
addresses in real memory addresses, adding fixed offsets. 

 
If a “round-robin” priority scheme is enough, the task scheduler 
needed to manage a multitask system is a simple state machine 
plus a “slice” timer, and it requires very low hardware resources. 
The inputs to this state machine are the RDY signals coming 
from the channel ports, and its outputs control the offset adders 
and the registers stacking queues.  
 

11. CONCLUSIONS 
 
If an application is known before the design cycle is started, an 
optimized product can be created by tuning the hardware and the 
software to the application requirements. It has been shown that, 
as a main difference with standard multitask systems, software 
is defined before the hardware synthesis process is started. 
 
This new hardware/software codesign paradigm, with intensive 
use of IP pretested solutions (both for hardware and software), 
and the fast hardware design cycles offered by Field 
Programmable Logic, will ensure a very reduced TTM (time to 
market). But, the most important conclusion is that by defining a 
common public design environment and some “standard” 
channels, a new and wide market is open, making feasible the 
fast integration  of IP solutions coming from different partners. 
 
This is a starting proposal, and many decisions are still taken by 
the designer. A broad research field is opened to look for 
automatic optimization algorithms (such as Search Explore 
Refine [15]), and performance & resources evaluation. Another 
field to explore is how a common interface to OnChip 
Emulation circuits could be used for multiprocessors debugging. 
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